skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multispectral Deep Neural Network Fusion Method for Low-Light Object Detection
Despite significant strides in achieving vehicle autonomy, robust perception under low-light conditions still remains a persistent challenge. In this study, we investigate the potential of multispectral imaging, thereby leveraging deep learning models to enhance object detection performance in the context of nighttime driving. Features encoded from the red, green, and blue (RGB) visual spectrum and thermal infrared images are combined to implement a multispectral object detection model. This has proven to be more effective compared to using visual channels only, as thermal images provide complementary information when discriminating objects in low-illumination conditions. Additionally, there is a lack of studies on effectively fusing these two modalities for optimal object detection performance. In this work, we present a framework based on the Faster R-CNN architecture with a feature pyramid network. Moreover, we design various fusion approaches using concatenation and addition operators at varying stages of the network to analyze their impact on object detection performance. Our experimental results on the KAIST and FLIR datasets show that our framework outperforms the baseline experiments of the unimodal input source and the existing multispectral object detectors  more » « less
Award ID(s):
2214830
PAR ID:
10530709
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Journal of Imaging
Volume:
10
Issue:
1
ISSN:
2313-433X
Page Range / eLocation ID:
12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Agaian, Sos S.; Jassim, Sabah A.; DelMarco, Stephen P.; Asari, Vijayan K. (Ed.)
    Recognizing the model of a vehicle in natural scene images is an important and challenging task for real-life applications. Current methods perform well under controlled conditions, such as frontal and horizontal view-angles or under optimal lighting conditions. Nevertheless, their performance decreases significantly in an unconstrained environment, that may include extreme darkness or over illuminated conditions. Other challenges to recognition systems include input images displaying very low visual quality or considerably low exposure levels. This paper strives to improve vehicle model recognition accuracy in dark scenes by using a deep neural network model. To boost the recognition performance of vehicle models, the approach performs joint enhancement and localization of vehicles for non-uniform-lighting conditions. Experimental results on several public datasets demonstrate the generality and robustness of our framework. It improves vehicle detection rate under poor lighting conditions, localizes objects of interest, and yields better vehicle model recognition accuracy on low-quality input image data. Grants: This work is supported by the US Department of Transportation, Federal Highway Administration (FHWA), grant contract: 693JJ320C000023 Keywords—Image enhancement, vehicle model and 
    more » « less
  2. Bayer pattern is a widely used Color Filter Array (CFA) for digital image sensors, efficiently capturing different light wavelengths on different pixels without the need for a costly ISP pipeline. The resulting single-channel raw Bayer images offer benefits such as spectral wavelength sensitivity and low time latency. However, object detection based on Bayer images has been underexplored due to challenges in human observation and algorithm design caused by the discontinuous color channels in adjacent pixels. To address this issue, we propose the BayerDetect network, an end-to-end deep object detection framework that aims to achieve fast, accurate, and memory-efficient object detection. Unlike RGB color images, where each pixel encodes spectral context from adjacent pixels during ISP color interpolation, raw Bayer images lack spectral context. To enhance the spectral context, the BayerDetect network introduces a spectral frequency attention block, transforming the raw Bayer image pattern to the frequency domain. In object detection, clear object boundaries are essential for accurate bounding box predictions. To handle the challenges posed by alternating spectral channels and mitigate the influence of discontinuous boundaries, the BayerDetect network incorporates a spatial attention scheme that utilizes deformable convolutional kernels in multiple scales to explore spatial context effectively. The extracted convolutional features are then passed through a sparse set of proposal boxes for detection and classification. We conducted experiments on both public and self-collected raw Bayer images, and the results demonstrate the superb performance of the BayerDetect network in object detection tasks. 
    more » « less
  3. Bayer pattern is a widely used Color Filter Array (CFA) for digital image sensors, efficiently capturing different light wavelengths on different pixels without the need for a costly ISP pipeline. The resulting single-channel raw Bayer images offer benefits such as spectral wavelength sensitivity and low time latency. However, object detection based on Bayer images has been underexplored due to challenges in human observation and algorithm design caused by the discontinuous color channels in adjacent pixels. To address this issue, we propose the BayerDetect network, an end-to-end deep object detection framework that aims to achieve fast, accurate, and memory-efficient object detection. Unlike RGB color images, where each pixel encodes spectral context from adjacent pixels during ISP color interpolation, raw Bayer images lack spectral context. To enhance the spectral context, the BayerDetect network introduces a spectral frequency attention block, transforming the raw Bayer image pattern to the frequency domain. In object detection, clear object boundaries are essential for accurate bounding box predictions. To handle the challenges posed by alternating spectral channels and mitigate the influence of discontinuous boundaries, the BayerDetect network incorporates a spatial attention scheme that utilizes deformable convolutional kernels in multiple scales to explore spatial context effectively. The extracted convolutional features are then passed through a sparse set of proposal boxes for detection and classification. We conducted experiments on both public and self-collected raw Bayer images, and the results demonstrate the superb performance of the BayerDetect network in object detection tasks. 
    more » « less
  4. e apply a new deep learning technique to detect, classify, and deblend sources in multi-band astronomical images. We train and evaluate the performance of an artificial neural network built on the Mask R-CNN image processing framework, a general code for efficient object detection, classification, and instance segmentation. After evaluating the performance of our network against simulated ground truth images for star and galaxy classes, we find a precision of 92% at 80% recall for stars and a precision of 98% at 80% recall for galaxies in a typical field with ∼30 galaxies/arcmin2. We investigate the deblending capability of our code, and find that clean deblends are handled robustly during object masking, even for significantly blended sources. This technique, or extensions using similar network architectures, may be applied to current and future deep imaging surveys such as LSST and WFIRST. Our code, Astro R-CNN, is publicly available at https://github.com/burke86/astro_rcnn 
    more » « less
  5. Long-range target detection in thermal infrared imagery is a challenging research problem due to the low resolution and limited detail captured by thermal sensors. The limited size and variability in thermal image datasets for small target detection is also a major constraint for the development of accurate and robust detection algorithms. To address both the sensor and data constraints, we propose a novel convolutional neural network (CNN) feature extraction architecture designed for small object detection in data-limited settings. More specifically, we focus on long-range ground-based thermal vehicle detection, but also show the effectiveness of the proposed algorithm on drone and satellite aerial imagery. The design of the proposed architecture is inspired by an analysis of popular object detectors as well as custom-designed networks. We find that restricted receptive fields (rather than more globalized features, as is the trend), along with less down sampling of feature maps and attenuated processing of fine-grained features, lead to greatly improved detection rates while mitigating the model’s capacity to overfit on small or poorly varied datasets. Our approach achieves state-of-the-art results on the Defense Systems Information Analysis Center (DSIAC) automated target recognition (ATR) and the Tiny Object Detection in Aerial Images (AI-TOD) datasets. 
    more » « less