skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rare and highly destructive wildfires drive human migration in the U.S.
Abstract The scale of wildfire impacts to the built environment is growing and will likely continue under rising average global temperatures. We investigate whether and at what destruction threshold wildfires have influenced human mobility patterns by examining the migration effects of the most destructive wildfires in the contiguous U.S. between 1999 and 2020. We find that only the most extreme wildfires (258+ structures destroyed) influenced migration patterns. In contrast, the majority of wildfires examined were less destructive and did not cause significant changes to out- or in-migration. These findings suggest that, for the past two decades, the influence of wildfire on population mobility was rare and operated primarily through destruction of the built environment.  more » « less
Award ID(s):
2117405 2001261
PAR ID:
10530755
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Research has shown that climate change creates warmer temperatures and drier conditions, leading to longer wildfire seasons and increased wildfire risks in the United States. These factors have, in turn, led to increases in the frequency, extent, and severity of wildfires in recent years. Given the danger posed by wildland fires to people, property, wildlife, and the environment, there is an urgent need to provide tools for effective wildfire management. Early detection of wildfires is essential to minimizing potentially catastrophic destruction. To that end, in this paper, we present our work on integrating multiple data sources into SmokeyNet, a deep learning model using spatiotemporal information to detect smoke from wildland fires. We present Multimodal SmokeyNet and SmokeyNet Ensemble for multimodal wildland fire smoke detection using satellite-based fire detections, weather sensor measurements, and optical camera images. An analysis is provided to compare these multimodal approaches to the baseline SmokeyNet in terms of accuracy metrics, as well as time-to-detect, which is important for the early detection of wildfires. Our results show that incorporating weather data in SmokeyNet improves performance numerically in terms of both F1 and time-to-detect over the baseline with a single data source. With a time-to-detect of only a few minutes, SmokeyNet can be used for automated early notification of wildfires, providing a useful tool in the fight against destructive wildfires. 
    more » « less
  2. Abstract Previous research has examined individual factors contributing to wildfire risk, but the compounding effects of these factors remain underexplored. Here, we introduce the “Integrated Human-centric Wildfire Risk Index (IHWRI)” to quantify the compounding effects of fire-weather intensification and anthropogenic factors—including ignitions and human settlement into wildland—on wildfire risk. While climatic trends increased the frequency of high-risk fire-weather by 2.5-fold, the combination of this trend with wildland-urban interface expansion led to a 4.1-fold increase in the frequency of conditions conducive to extreme-impact wildfires from 1990 to 2022 across California. More than three-quarters of extreme-impact wildfires—defined as the top 20 largest, most destructive, or deadliest events on record—originated within 1 km from the wildland-urban interface. The deadliest and most destructive wildfires—90% of which were human-caused—primarily occurred in the fall, while the largest wildfires—56% of which were human-caused—mostly took place in the summer. By integrating human activity and climate change impacts, we provide a holistic understanding of human-centric wildfire risk, crucial for policy development. 
    more » « less
  3. As the number of highly destructive wildfires grows, it is increasingly important to understand the long-term changes that occur to fire-affected places. Integrating approaches from social and biophysical science, we document two forms of neighborhood change following the 2018 Camp Fire in the United States, examining the more than 17,000 residential structures within the burn footprint. We found that mobile or motor homes, lowervalue residences, and absentee owner residences had a significantly higher probability of being destroyed, providing evidence that housing stock filtering facilitated socially stratified patterns of physical damage. While the relationship between building value and destruction probability could be explained by measures of building density and distance to nearby roads, building type remained an independent predictor of structure loss that we could not fully explain by adding environmental covariates to our models. Using a geospatial machine learning technique, we then identified buildings that had been reconstructed within the burn footprint 20 months after the fire. We found that reconstructed buildings were more likely to have been owner-occupied prior to the fire and had higher average pre-fire property value, suggesting an emerging pattern of cost-burden gentrification. Our findings illustrate the importance of examining the built environment as a driver of socially uneven disaster impacts. Wildfire mitigation strategies are needed for mobile and motor home residents, renters, low-income residents, and dense neighborhoods. 
    more » « less
  4. Beecham, Roger; Long, Jed A.; Smith, Dianna; Zhao, Qunshan; Wise, Sarah (Ed.)
    This paper proposes a data fusion framework that seeks to investigate joint mobility signals around wildfires in relation to geographic scale of analysis (level of spatial aggregation), as well as spatial and temporal extents (i.e. distance to the event and duration of the observation period). We highlight the usefulness of our framework using intra-urban mobility data from Mapbox and SafeGraph for two wildfires in California: Lake Fire (August-September 2020, Los Angeles County) and Silverado Fire (October-November 2020, Orange County). We identify two distinct patterns of mobility behavior: one associated with the wildfire event and another one - with the routine daily mobility of the nearby urban core. Using the combination of data fusion and tensor decomposition, the framework allows us to capture additional insights from the data, that were otherwise unavailable in raw mobility data. 
    more » « less
  5. Background The decision making process undertaken during wildfire responses is complex and prone to uncertainty. In the US, decisions federal land managers make are influenced by numerous and often competing factors. Aims To assess and validate the presence of decision factors relevant to the wildfire decision making context that were previously known and to identify those that have emerged since the US federal wildfire policy was updated in 2009. Methods Interviews were conducted across the US while wildfires were actively burning to elucidate time-of-fire decision factors. Data were coded and thematically analysed. Key results Most previously known decision factors as well as numerous emergent factors were identified. Conclusions To contextualise decision factors within the decision making process, we offer a Wildfire Decision Framework that has value for policy makers seeking to improve decision making, managers improving their process and wildfire social science researchers. Implications Managers may gain a better understanding of their decision environment and use our framework as a tool to validate their deliberations. Researchers may use these data to help explain the various pressures and influences modern land and wildfire managers experience. Policy makers and agencies may take institutional steps to align the actions of their staff with desired wildfire outcomes. 
    more » « less