skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Examining What and How Secondary Science Preservice Teachers Learn from Using a Suite of Online Simulations
Preservice teachers (PSTs) need to be able to use ambitious teaching practices to help support their students’ productive engagement in scientific practices such as analyzing and interpreting data or using evidence-based reasoning to support their claims. Approximations of practice are one way in which teacher educators can support their PSTs to develop their skills in enacting ambitious teaching practices. In this study, we report on the use of a suite of three online, simulated approximations of practice where secondary PSTs practiced facilitating discussions focused on engaging students in argumentation. Using information from both PSTs’ and teacher educators’ perspectives, we examined their main takeaways from each simulation experience, how learning from one simulation was used to prepare for the next simulation, PSTs’ perception of the simulations’ authenticity, and their views about whether they would recommend using this online suite of simulations in future teacher preparation courses. Findings suggested that teacher educators and PSTs alike noted a variety of main takeaways, including understanding the importance of planning and asking good questions. Furthermore, they recommended the suite for use in future teacher education courses. Implications of the work for productively integrating online simulations into teacher education settings are discussed.  more » « less
Award ID(s):
2037983
PAR ID:
10530779
Author(s) / Creator(s):
; ;
Publisher / Repository:
Taylor
Date Published:
Journal Name:
Journal of Science Teacher Education
ISSN:
1046-560X
Page Range / eLocation ID:
1 to 25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, we explored how the use of an online digital teaching simulation impacts preservice teacher (PST) learning. We describe the overall implementation of an online practice suite of digital teaching simulations into five teacher education courses. Specifically, we detail the avatar-based simulation activity in which PSTs facilitate a discussion focused on argumentation with five student avatars controlled by a trained actor in the Mursion simulated classroom environment. The present study examines PSTs’ self-assessment of their performance facilitating a discussion in this simulated classroom compared to rubric-level scores assigned by trained raters. We share findings from our analysis of survey data regarding 47 PSTs’ perceptions about their experience with the simulated classroom, specifically how successful they thought they were across five dimensions of facilitating argumentation-focused discussions. Findings suggest that the PSTs’ self-assessment tended to align with the scores assigned from trained raters. However, when the PSTs’ self-assessment did not align with the raters’ scoring, PSTs tended to perceive their discussion facilitation more positively than the raters’ scores indicated, which suggests the need for additional support to help PSTs identify and attend to specific areas for improvement. Findings provide support for the use of both self-assessment and scoring from trained raters to optimize PST learning with digital teaching simulations. 
    more » « less
  2. Abstract Preparing preservice teachers (PSTs) to be able to notice, interpret, respond to and orchestrate student ideas—the core practices of responsive teaching—is a key goal for contemporary science and mathematics teacher education. This mixed‐methods study, employing a virtual reality (VR)‐supported simulation integrated with artificial intelligence (AI)‐powered virtual students, explored the frequent patterns of PSTs' talk moves as they attempted to orchestrate a responsive discussion, as well as the affordances and challenges of leveraging AI‐supported virtual simulation to enhance PSTs' responsive teaching skills. Sequential analysis of the talk moves of both PSTs (n = 24) and virtual students indicated that although PSTs did employ responsive talk moves, they encountered difficulties in transitioning from the authoritative, teacher‐centred teaching approach to a responsive way of teaching. The qualitative analysis with triangulated dialogue transcripts, observational field notes and semi‐structured interviews revealed participants' engagement in (1) orchestrating discussion by leveraging the design features of AI‐supported simulation, (2) iterative rehearsals through naturalistic and contextualized interactions and (3) exploring realism and boundaries in AI‐powered virtual students. The study findings provide insights into the potential of leveraging AI‐supported virtual simulation to improve PSTs' responsive teaching skills. The study also underscores the need for PSTs to engage in well‐designed pedagogical practices with adaptive and in situ support. Practitioner notesWhat is already known about this topicDeveloping the teaching capacity of responsive teaching is an important goal for preservice teacher (PST) education. PSTs need systematic opportunities to build fluency in this approach.Virtual simulations can provide PSTs with the opportunities to practice interactive teaching and have been shown to improve their teaching skills.Artificial intelligence (AI)‐powered virtual students can be integrated into virtual simulations to enable interactive and authentic practice of teaching.What this paper addsAI‐supported simulation has the potential to support PSTs' responsive teaching skills.While PSTs enact responsive teaching talk moves, they struggle to enact those talk moves in challenging teaching scenarios due to limited epistemic and pedagogical resources.AI‐supported simulation affords iterative and contextualized opportunities for PSTs to practice responsive teaching talk moves; it challenges teachers to analyse student discourse and respond in real time.Implications for practice and/or policyPSTs should build a teaching repertoire with both basic and advanced responsive talk moves.The learning module should adapt to PSTs' prior experience and provide PSTs with in situ learning support to navigate challenging teaching scenarios.Integrating interaction features and AI‐based virtual students into the simulation can facilitate PSTs' active participation. 
    more » « less
  3. This chapter reports on work from a decade-long project to develop and study the use of teaching simulations focused on the teaching practices of eliciting and interpreting student thinking to support preservice teachers' (PSTs') learning. The chapter describes how teaching simulations focused on these practices allow teacher educators to support PSTs in orienting to student sense-making that is at the heart of equitable mathematics instruction. The teaching simulation approach is described. Examples illustrate how the approach is designed and facilitated in ways that make visible PSTs' engagement with three teaching performance areas (eliciting the student's process, using mathematical knowledge and skill, and conveying respect for the student as a mathematical thinker and learner) that are crucial for more equitable mathematics instruction. Connections between each of the performance areas and more equitable eliciting and interpreting of student thinking are described alongside the ways in which teacher educators can provide feedback that supports PSTs' development. 
    more » « less
  4. null (Ed.)
    Though elementary educators recognize the importance of integrating engineering in their classrooms, many feel challenged and unprepared to teach engineering content. The absence of effective engineering instruction in teacher preparation programs leaves future educators unprepared for this challenge. Ed+gineering is an NSF-funded partnership between education and engineering aimed at increasing preservice teacher (PST) preparation, confidence, and intention to integrate engineering into their teaching. Ed+gineering partners education and engineering students in multidisciplinary teams within the context of their respective university courses. As part of their coursework, the teams plan and deliver culturally responsive engineering lessons to elementary school students under the guidance of one engineering and one education faculty. This paper investigates the impact of Ed+gineering on PSTs’ knowledge of engineering practices, engineering pedagogical knowledge, self-efficacy to integrate engineering, and beliefs about engineering integration. The impact of Ed+gineering on participating PSTs was assessed using three collaborations involving students in engineering and education during Fall 2019 and Spring 2020. Preliminary results suggest that the Ed+gineering partnership positively impacted engineering-pedagogical knowledge, knowledge of engineering practices, and self efficacy for integrating engineering. The specific magnitude of the impact and its implications are discussed. 
    more » « less
  5. Calls for a “practice-based” approach to teacher education have become common in scholarship on teacher education, and preservice-teaching (PST) mathematics programs are increasingly heeding this call. Practice-based teacher education (PBTE) moves beyond standard approaches to teacher education in which PSTs learn about teaching in ways they are then expected to apply in practice and toward an approach that provides PSTs opportunities to gain experience in particular core practices in ways that approximate enactment in the classroom. A growing body of research suggests that teachers’ responses, including the questions they ask, can help students’ develop content knowledge and proficiency in mathematics and science practices in the classroom. However, despite evidence that PSTs can notice students’ thinking in various activities in their preparation programs, it is not clear that they are sufficiently well-prepared to propose quality responses before entering the classroom. In this paper, we describe two different approaches that we have taken to provide support for quality teacher questioning in the LessonSketch environment. From our results, we develop a hypothesis that a pedagogical approach that primes novices to notice model questioning can support a stance of focusing on the substance of students’ thinking and probing rather than guiding students’ thinking in their proposed questions. 
    more » « less