skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhancing the optoelectronic properties of solution-processed AgInSe 2 thin films for application in photovoltaics
AgInSe2 is a promising direct bandgap thin-film material with a rare n-type conductivity. Similar to thin film photovoltaic materials such as Cu(In,Ga)Se2 (CIGSe), which have achieved efficiencies as high as ~23%, AgInSe2 also crystallizes in a chalcopyrite phase while also being more tolerant to antisite defects due to higher defect formation energies resulting from more significant variations in cation sizes. AgInSe2 has a suitable bandgap of 1.24 eV, which lies in the high-efficiency region of the detailed balance limit. In this work, we have utilized a Dimethyl Formamide-Thiourea-Chloride-based solution-processed route to deposit a thin film of AgInS2 which is converted into AgInSe2 after a heat-treatment step in a selenium environment. AgInSe2 optoelectronic properties depend on the Ag/In ratio and the selenium heat-treatment conditions. Significant improvements in photoluminescence yield and lifetime are observed for Ag-poor films in selenium-rich conditions. X-ray Photoelectron Spectroscopy (XPS) measurements confirm a higher amount of selenium on the surface of films with improved optoelectronic properties. Furthermore, a high minority carrier lifetime of 9.2 ns and a Photoluminescence Quantum Yield (PLQY) of 0.013% is obtained without any passivating layer, which improved to 0.03% after CdS passivation. Hall effect measurements confirm that AgInSe2 has n-type conductivity with a moderate carrier concentration (10-14 cm-3), more suitable for a p-i-n architecture. XPS has further confirmed the moderate n-type conductivity.  more » « less
Award ID(s):
1855882
PAR ID:
10530801
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Journal of Material Chemistry C
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
12
Issue:
1
ISSN:
2050-7526
Page Range / eLocation ID:
325 to 336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The development of tandem photovoltaics and photoelectrochemical solar cells requires new absorber materials with bandgaps in the range of ≈1.5–2.3 eV, for use in the top cell paired with a narrower‐gap bottom cell. An outstanding challenge is finding materials with suitable optoelectronic and defect properties, good operational stability, and synthesis conditions that preserve underlying device layers. This study demonstrates the Zintl phosphide compound CaZn2P2as a compelling candidate semiconductor for these applications. Phase‐pure, ≈500 nm‐thick CaZn2P2thin films are prepared using a scalable reactive sputter deposition process at growth temperatures as low as 100 °C, which is desirable for device integration. Ultraviolet‐visible  spectroscopy shows that CaZn2P2films exhibit an optical absorptivity of ≈104 cm−1at ≈1.95 eV direct bandgap. Room‐temperature photoluminescence (PL) measurements show near‐band‐edge optical emission, and time‐resolved microwave conductivity (TRMC) measurements indicate a photoexcited carrier lifetime of ≈30 ns. CaZn2P2is highly stable in both ambient conditions and moisture, as evidenced by PL and TRMC measurements. Experimental data are supported by first‐principles calculations, which indicate the absence of low‐formation‐energy, deep intrinsic defects. Overall, this study shall motivate future work integrating this potential top cell absorber material into tandem solar cells. 
    more » « less
  2. Abstract This study investigates the presence of titanium oxynitride bonds in titanium dioxide (TiO2) thin films grown by atomic layer deposition (ALD) using tetrakis dimethyl amino titanium (TDMAT) and water at temperatures between 150 and 350 °C and its effect on the films’ optical and electrical properties. Compositional analysis using X‐ray photoelectron spectroscopy (XPS) reveals increased incorporation of oxynitride bonds as the process temperature increases. Furthermore, depth profile data demonstrates an increase in the abundance of this type of bonding from the surface to the bulk of the films. Ultraviolet‐visible spectroscopy (UV‐vis) measurements correlate increased visible light absorption for the films with elevated oxynitride incorporation. The optical constants (n, k) of the films show a pronounced dependence on the process temperature that is mirrored in the film conductivity. The detection of oxynitride bonding suggests a secondary reaction pathway in this well‐established ALD process chemistry, that may impact film properties. These findings indicate that the choice of process chemistry and conditions can be used to optimize film properties for optoelectronic applications. 
    more » « less
  3. Abstract Metal halide perovskites based on formamidinium (FA), or FA‐rich compositions have shown great promise for high‐performance photovoltaics. A deeper understanding of the impact of ambient conditions (e.g., moisture, oxygen, and illumination) on the possible reactions of FA‐based perovskite films and their processing sensitivities has become critical for further advances toward commercialization. Herein, we investigate reactions that take place on the surface of the FA0.7Cs0.3, mixed Br/I wide bandgap perovskite thin films in the presence of humid air and ambient illumination. The treatment forms a surface layer containing O, OH, and N‐based anions. We propose the latter originates from formamidine trapped at the perovskite/oxide interface reacting further to cyanide and/or formamidinate—an understudied class of pseudohalides that bind to Pb. Optimized treatment conditions improve photoluminescence quantum yield owing to both reduced surface recombination velocity and increased bulk carrier lifetime. The corresponding perovskite solar cells also exhibit improved performance. Identifying these reactions opens possibilities for better utilizing cyanide and amidinate ligands, species that may be expected during vapor processing of FA‐based perovskites. Our work also provides new insights into the self‐healing or self‐passivating of MA‐free perovskite compositions where FA and iodide damage could be partially offset by advantageous reaction byproducts. image 
    more » « less
  4. We report on the growth, grain enhancement, doping, and electron mobility of cadmium selenide (CdSe) thin films deposited using the thermal evaporation method. The optical measurement shows CdSe is a direct bandgap material with an optical bandgap (Egap) of 1.72 eV. CdSe thin films were deposited on fluorine doped tin oxide glass substrates with different thicknesses, and grain size and mobility were measured on the films. CdCl2 was deposited on the films, and the films were subjected to high temperature treatment for several hours. It was found that both grain sizes increased significantly after CdCl2 treatment. The mobility of electrons was measured using the space charge limited current technique, and it was found that the mobility increased significantly after CdCl2 treatment. It was discovered that postdeposition selenization further improved the electrical properties of CdSe thin films by increasing the electron mobility-lifetime product and the photo/dark conductivity ratio. CdSe films after postselenization also showed significantly lower values for midgap states and Urbach energies for valence band tail states. 
    more » « less
  5. Multilayered thermoelectric Sn/Sn+SnO2 thin films were prepared using KJL DC/RF magnetron sputtering system under Ar gas plasma on the SiO2 substrates. The thicknesses of the fabricated thin films were found using Filmetrics UV thickness measurement system. The fabricated thin films were annealed at different temperatures for one hour to tailor the thermoelectric properties. In this study, unannealed, annealed at 150 and 300 °C samples were characterized using Thermo Fisher XPS system brought to the Alabama A&M University by the NSF-MRI support. X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a type of analysis used for characterization of various surface materials. XPS is mostly known for the characterization of thin films - which are coatings that have been deposited onto a substrate and may be comprised of many different materials to alter or enhance the substrate’s performance. XPS analysis provides information for composition, chemical states, depth profile, imaging and thickness of thin film. This paper focuses on the application of XPS techniques in thin film research for Sn/Sn+SnO2 multilayered thermoelectric system and SiO2 substrates annealed at different temperatures. Since SiO2 substrates were used during the deposition of the multilayer thin films, we would like to perform detailed XPS studies on the SiO2 substrates. SiO2 substrates is being used with many researchers, this manuscript will be good reference for the researchers using SiO2 substrates. Thermal treatment of the substrates and the multilayered thin films has caused some changes of the XPS characterization including binding energy, depth profile, peak value and FWHM. The treatment effects were discussed and compared to each other. 
    more » « less