Abstract Lead halide perovskites (LHPs), have attracted considerable attention across various applications owing to their exceptional optoelectronic properties. However, the main challenge hindering the broad adoption of lead halide perovskites lies in their stability and toxicity. In this review, we summarize the outstanding properties of platinum (Pt) halide perovskites, with a particular focus on the stability and applications of Cs2PtI6and its derivatives. Cs2PtI6has shown promising efficiency for photovoltaic devices, as well as photoelectrochemical water splitting with stable behavior in acid or basic conditions. Cs2PtI6also shows promise in gas sensing and thermoelectric devices. The emergence of 2D Pt (II) halide perovskites opens up new avenues for environmentally friendly materials for photonic and optoelectronic devices like room temperature phosphoresce and triplet‐triplet annihilation (TTA) based up‐conversion. image
more »
« less
This content will become publicly available on February 1, 2026
In situ formation of pseudohalide anions induced by humid air and light passivates formamidinium‐based halide perovskites
Abstract Metal halide perovskites based on formamidinium (FA), or FA‐rich compositions have shown great promise for high‐performance photovoltaics. A deeper understanding of the impact of ambient conditions (e.g., moisture, oxygen, and illumination) on the possible reactions of FA‐based perovskite films and their processing sensitivities has become critical for further advances toward commercialization. Herein, we investigate reactions that take place on the surface of the FA0.7Cs0.3, mixed Br/I wide bandgap perovskite thin films in the presence of humid air and ambient illumination. The treatment forms a surface layer containing O, OH, and N‐based anions. We propose the latter originates from formamidine trapped at the perovskite/oxide interface reacting further to cyanide and/or formamidinate—an understudied class of pseudohalides that bind to Pb. Optimized treatment conditions improve photoluminescence quantum yield owing to both reduced surface recombination velocity and increased bulk carrier lifetime. The corresponding perovskite solar cells also exhibit improved performance. Identifying these reactions opens possibilities for better utilizing cyanide and amidinate ligands, species that may be expected during vapor processing of FA‐based perovskites. Our work also provides new insights into the self‐healing or self‐passivating of MA‐free perovskite compositions where FA and iodide damage could be partially offset by advantageous reaction byproducts. image
more »
« less
- Award ID(s):
- 2043205
- PAR ID:
- 10575765
- Publisher / Repository:
- John Wiley & Sons, Inc
- Date Published:
- Journal Name:
- InfoMat
- Volume:
- 7
- Issue:
- 2
- ISSN:
- 2567-3165
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We report that treatment of several 2‐diphenylphosphinoimidazoles with Pd(II) salts generates monosubstituted N−H NHC−Pd complexes via insertion into the C−P bond. Removal of the N−H proton in situ leads to anionic (X‐type) or imidazolyl‐Pd complexes that are highly stable and catalytically active, achieving up to 340,000 turnovers at 1 ppm catalyst loading in Suzuki‐Miyaura reactions. DFT‐calculated Tolman electronic parameters for the sterically small ligands suggest that these ligands are significantly more donating than traditional NHCs, which provides a rationale for rapid cross‐coupling catalysis. Excellent reactivity is also demonstrated in Sonogashira reactions. magnified imagemore » « less
-
Abstract Pseudocyclic β‐trifluorosulfonyloxy vinylbenziodoxolones were prepared starting from hydroxybenziodoxolones and alkynes in the presence of trifluoromethanesulfonic acid. The reaction of these compounds with azide anion leads to β‐azido vinylbenziodoxolones as products of vinylic nucleophilic substitution in which addition‐elimination reactions occur and the double bond configuration is retained. The structures of β‐trifluorosulfonyloxy vinylbenziodoxolone and β‐azido vinylbenziodoxolone were established by single crystal X‐ray diffraction. magnified imagemore » « less
-
Abstract Phosphorus‐containing compounds have a long history of utility in a broad range of fields, including agricultural, pharmaceutical, and metal‐mediated reactions. In recent decades, numerous methods have been developed to streamline the synthesis of organophosphorus reagents based on these numerous applications. This review focuses upon the recent development of phosphorus(III)‐ and phosphorus(V)‐directed C−H borylation reactions. This transformation has evolved significantly in the past two years, resulting in several new methods that provide access to organic substrates containing both phosphorus and boron. Further functionalization of the carbon−boron bond to provide functionalized organophosphorus products is discussed. magnified imagemore » « less
-
Abstract A versatile method for the Suzuki‐Miyaura cross‐coupling of amides using highly active, well‐defined, and air‐stable Pd−phosphine precatalysts is reported. Most notably, the method represents the first example of using practical and operationally‐simple Pd(II)−phosphine precatalysts in the emerging amide bond cross‐coupling manifold. The reactions are efficient at 0.10 mol% loading, furnishing biaryl ketones with high chemoselectivity for N−C(O) bond cleavage. This versatile method enables for the first time to achieve Pd−phosphine‐catalyzed cross‐coupling of amides at ppm loading. This C−N cross‐coupling can be used to efficiently furnish pharmaceutical intermediates by orthogonal Pd‐catalyzed cross‐couplings. We fully expect that operationally‐simple [(PR3)2Pd(II)X2] precatalysts as effective triggers for N−C(O) cross‐coupling will be of broad synthetic and catalytic interest. magnified imagemore » « less
An official website of the United States government
