Chalcogenide semiconductors, such as BaMS3 (M = Zr and Hf) and Cu2BaSnS4, have attracted growing interest due to the constituent elements’ abundance and reported promising properties. However, the synthesis of these alkaline earth-containing chalcogenides from commonly available metal halides has generally been unsuccessful and has traditionally relied on expensive organometallic precursors or vacuum processing techniques, which hinder widespread research on these materials. In this study, we conducted thermodynamic calculations and developed chloriphilicity and iodiphilicity scales for various metals, leveraging their relative affinities for chlorine and iodine, respectively, compared to their corresponding metal sulfides. Utilizing these scales, we introduced a K2S–H2S system to address the affinity of alkaline earth metals for chlorine and iodine. This approach enables the synthesis of these intriguing chalcogenide materials through solution-based methods using metal chloride and metal iodide precursors. This system demonstrates remarkable efficacy for both sulfide and selenide semiconductors.
more »
« less
Expanding the horizons for viable precursors and liquid fluxes for the synthesis of BaZrS 3 and related compounds
Chalcogenide perovskites represent a prominent class of emerging semiconductor materials for photovoltaic applications, boasting excellent optoelectronic properties, appropriate bandgaps, and remarkable stability. Among these, BaZrS3 is one of the most extensively studied chalcogenide perovskites. However, its synthesis typically demands high temperatures exceeding 900 °C. While recent advancements in solution-processing techniques have mitigated this challenge, they often rely on costly and difficult-to-find organometallic precursors. Furthermore, there is a notable gap in research regarding the influence of the Ba/Zr ratio on phase purity. Thus, our study explores solid-state reactions to investigate the impact of metal ratios and sulfur pressure on the phase purity of BaZrS3. Expanding upon this investigation, we aim to leverage cost-effective metal halide and metal sulfide precursors for the solution-based synthesis of BaMS3 (M=Ti, Zr, Hf) compounds. Additionally, we have devised a bilayer stacking approach to address the halide affinity of alkaline earth metals. Moreover, we introduce a novel solution-chemistry capable of dissolving alkaline earth metal sulfides, enabling the synthesis of BaMS3 compounds from metal sulfide precursors. While the BaSx liquid flux has shown promise, we identify the selenium liquid flux as an alternative method for synthesizing BaMS3 compounds.
more »
« less
- Award ID(s):
- 1855882
- PAR ID:
- 10530803
- Publisher / Repository:
- Journal of Materials Chemistry C
- Date Published:
- Journal Name:
- Journal of Materials Chemistry C
- ISSN:
- 2050-7526
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Chalcogenide perovskites have garnered increasing attention as stable, non‐toxic alternatives to lead halide perovskites. However, their conventional synthesis at high temperatures (>1000 °C) has hindered widespread adoption. Recent studies have developed low‐to‐moderate temperature synthesis methods (<600 °C) using reactive precursors, yet a comprehensive understanding of the pivotal factors affecting reproducibility and repeatability remains elusive. This study delineates the critical factors in the low‐temperature synthesis of BaMS3(M═Zr, Hf, Ti) compounds and presents a generalized framework. Innovative approaches are developed for synthesizing BaMS3compounds using this framework involving organometallics for solution deposition. The molecular precursor routes, employing metal acetylacetonates to generate soluble metal–sulfur bonded complexes and metal–organic compounds to produce soluble metal‐thiolate, metal‐isothiocyanate, and metal‐trithiocarbonate species, are demonstrated to yield carbon‐free BaMS3. These methods have achieved the most contiguous films of BaZrS3and BaHfS3using solution deposition to date. Furthermore, a hybrid solution processing method involving stacking sputter‐deposited Zr and solution‐deposited BaS layers is employed to synthesize a contiguous, oxygen‐free BaZrS3film. The diffuse reflectance measurements indicate a direct bandgap of ≈ 1.85 eV for the BaZrS3films and ≈ 2.1 eV for the BaHfS3film under investigation.more » « less
-
Recently, chalcogenide perovskites, of the form ABX3, where typically A = alkaline earth metals Ca, Sr, or Ba; B = group IV transition metals Zr or Hf; and X = chalcogens S or Se, have become of interest for their potential optoelectronic properties. In this work, we build upon recent studies and show a general synthesis protocol, involving the use of carbon disulfide insertion chemistry, to generate highly reactive precursors that can be used towards the colloidal synthesis of numerous ABS3 nanomaterials, including BaTiS3, BaZrS3, BaHfS3, α-SrZrS3 and α-SrHfS3. We overcome the shortcomings in the current literature where BaZrS3 nanoparticles are synthesized in separate phases via colloidal methods and lack a reproducible protocol for orthorhombic perovskite nanoparticles. We present a high-temperature, hot-injection method that reliably controls the formation of the colloidal BaZrS3 nanoparticles with the Pnma orthorhombic distorted perovskite structure. We show that the alternate phase, most notably denoted by its extra peaks in the pXRD pattern, is distinct from the distorted perovskite phase as it has a different bandgap value obtained via UV-vis measurements. We also show that the reaction byproducts, resulting from the use of oleylamine and CS2, have their own photoluminescence (PL), and their residual presence on the surface of the nanoparticles complicates the interpretation of PL from the nanoparticles. The utility of these nanomaterials is also assessed via the measurement of their absorption properties and in the form of highly stable colloidal inks for the fabrication of homogeneous, crack-free thin films of BaZrS3 nanoparticles.more » « less
-
Chalcogenide perovskites have increasingly garnered attention in recent years for various optoelectronic applications. While distorted perovskites such as BaZrS3 are primarily being explored for photovoltaic applications, hexagonal ABS3 compounds such as BaTiS3 have been proposed for optical devices and thermoelectrics due to their intriguing properties arising from their quasi-1D structure, which imparts anisotropy in properties. However, other members of the hexagonal family remain largely unexplored, likely due to their harsh synthesis conditions. In this report, we synthesize nanocrystals of relatively unexplored members of the hexagonal ABX3 chalcogenides family, which also possess a similar rod-like morphology and could be useful for polarized photodetection applications. Specifically, we modified our previously reported sulfide perovskite nanoparticle synthesis route to produce BaNbS3 and BaTaS3 nanocrystals. Furthermore, we explored selenium and selenourea as precursors to synthesize selenide hexagonal nanocrystals such as BaTiSe3 and BaZrSe3, as well as other selenide analogues like Ba3Nb2Se9 and Ba3Ta2Se9. This marks the first report of nanocrystal synthesis for the BaMSe3 family, where M is an early transition metal.more » « less
-
Synthesis of homoleptic zirconium and hafnium dithiocarbamate via carbon disulfide insertion into zirconium and hafnium amides were investigated for their utility as soluble molecular precursors for chalcogenide perovskites and binary metal sulfides. Treating M(NEtR)4 (M= Zr, Hf and R= Me, Et) with CS2 resulted in quantitative yields of homoleptic Group IV dithiocarbamates. Zr(2-S2CNMeEt) (1), Zr(2-S2CNEt2)4 (2), and Hf(2-S2CNEt2)4 (4), a rare example of a crystal of a homoleptic hafnium CS2 inserted amide species, were characterized. A computational analysis confirmed assignments for IR spectroscopy. To exemplify the utility of the Group IV dithiocarbamates, a solution-phase nanoparticle synthesis was performed to obtain ZrS3 via the thermal decomposition of Zr(S2CNMeEt)4.more » « less
An official website of the United States government

