skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genomic Analysis of Plastid–Nuclear Interactions and Differential Evolution Rates in Coevolved Genes across Juglandaceae Species
The interaction between the nuclear and chloroplast genomes in plants is crucial for preserving essential cellular functions in the face of varying rates of mutation, levels of selection, and modes of transmission. Despite this, identifying nuclear genes that coevolve with chloroplast genomes at a genome-wide level has remained a challenge. In this study, we conducted an evolutionary rate covariation analysis to identify candidate nuclear genes coevolving with chloroplast genomes in Juglandaceae. Our analysis was based on 4,894 orthologous nuclear genes and 76 genes across seven chloroplast partitions in nine Juglandaceae species. Our results indicated that 1,369 (27.97%) of the nuclear genes demonstrated signatures of coevolution, with the Ycf1/2 partition yielding the largest number of hits (765) and the ClpP1 partition yielding the fewest (13). These hits were found to be significantly enriched in biological processes related to leaf development, photoperiodism, and response to abiotic stress. Among the seven partitions, AccD, ClpP1, MatK, and RNA polymerase partitions and their respective hits exhibited a narrow range, characterized by dN/dS values below 1. In contrast, the Ribosomal, Photosynthesis, Ycf1/2 partitions and their corresponding hits, displayed a broader range of dN/dS values, with certain values exceeding 1. Our findings highlight the differences in the number of candidate nuclear genes coevolving with the seven chloroplast partitions in Juglandaceae species and the correlation between the evolution rates of these genes and their corresponding chloroplast partitions.  more » « less
Award ID(s):
2114641
PAR ID:
10530825
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Archibald, John
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Genome Biology and Evolution
Volume:
15
Issue:
8
ISSN:
1759-6653
Page Range / eLocation ID:
evad145
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Nuclear and plastid (chloroplast) genomes experience different mutation rates, levels of selection, and transmission modes, yet key cellular functions depend on their coordinated interactions. Functionally related proteins often show correlated changes in rates of sequence evolution across a phylogeny (evolutionary rate covariation or ERC), offering a means to detect previously unidentified suites of coevolving and cofunctional genes. We performed phylogenomic analyses across angiosperm diversity, scanning the nuclear genome for genes that exhibit ERC with plastid genes. As expected, the strongest hits were highly enriched for genes encoding plastid-targeted proteins, providing evidence that cytonuclear interactions affect rates of molecular evolution at genome-wide scales. Many identified nuclear genes functioned in post-transcriptional regulation and the maintenance of protein homeostasis (proteostasis), including protein translation (in both the plastid and cytosol), import, quality control and turnover. We also identified nuclear genes that exhibit strong signatures of coevolution with the plastid genome, but their encoded proteins lack organellar-targeting annotations, making them candidates for having previously undescribed roles in plastids. In sum, our genome-wide analyses reveal that plastid-nuclear coevolution extends beyond the intimate molecular interactions within chloroplast enzyme complexes and may be driven by frequent rewiring of the machinery responsible for maintenance of plastid proteostasis in angiosperms. 
    more » « less
  2. Abstract Marine microorganisms inhabiting nutrient-depleted waters play critical roles in global biogeochemical cycles due to their abundance and broad distribution. Many of these microbes share similar genomic features including small genome size, low % G + C content, short intergenic regions, and low nitrogen content in encoded amino acid residue side chains (N-ARSC), but the evolutionary drivers of these characteristics are unclear. Here, we compared the strength of purifying selection across the Marinimicrobia, a candidate phylum which encompasses a broad range of phylogenetic groups with disparate genomic features, by estimating the ratio of nonsynonymous and synonymous substitutions (dN/dS) in conserved marker genes. Our analysis reveals that epipelagic Marinimicrobia that exhibit features consistent with genome streamlining have significantly lower dN/dS values when compared with their mesopelagic counterparts. We also found a significant positive correlation between median dN/dS values and % G + C content, N-ARSC, and intergenic region length. We did not identify a significant correlation between dN/dS ratios and estimated genome size, suggesting the strength of selection is not a primary factor shaping genome size in this group. Our findings are generally consistent with genome streamlining theory, which postulates that many genomic features of abundant epipelagic bacteria are the result of adaptation to oligotrophic nutrient conditions. Our results are also in agreement with previous findings that genome streamlining is common in epipelagic waters, suggesting that microbes inhabiting this region of the ocean have been shaped by strong selection together with prevalent nutritional constraints characteristic of this environment. 
    more » « less
  3. Abstract Co-adaptation of cytoplasmic and nuclear genomes are critical to physiological function for many species. Despite this understanding, hybridization can disrupt co-adaptation leading to a mismatch between maternally-inherited cytoplasmic genomes and biparentally inherited nuclear genomes. Few studies have examined the consequences of cytonuclear interactions to physiological function across environments. Here, we quantify the degree of co-introgression between chloroplast and nuclear-chloroplast (N-cp) genes across repeated hybrid zones and its consequences to physiological function across environments. We use whole-genome resequencing and common garden experiments with clonally replicated genotypes sampled across the natural hybrid zone betweenPopulus trichocarpaandP. balsamifera. We use geographic clines to test for co-introgression of the chloroplast genome with N-cp and non-interacting nuclear genes. Co-introgression of chloroplast and N-cp genes was limited although contact zone-specific patterns suggest that local environments may influence co-introgression. Combining ancestry estimates with phenotypic data across common gardens revealed that mismatches between chloroplast and nuclear ancestry can influence physiological performance, but the strength and direction of these effects vary depending on the environment. Overall, this study highlights the importance of cytonuclear interactions to adaptation, and the role of environment in modifying the effect of those interactions. 
    more » « less
  4. ‘CandidatusLiberibacter’ is a group of bacterial species that are obligate intracellular plant pathogens and cause Huanglongbing disease of citrus trees and Zebra Chip in potatoes. Here, we examined the extent of intra- and interspecific genetic diversity across the genus using comparative genomics. Our approach examined a wide set ofLiberibactergenome sequences including five pathogenic species and one species not known to cause disease. By performing comparative genomics analyses, we sought to understand the evolutionary history of this genus and to identify genes or genome regions that may affect pathogenicity. With a set of 52 genomes, we performed comparative genomics, measured genome rearrangement, and completed statistical tests of positive selection. We explored markers of genetic diversity across the genus, such as average nucleotide identity across the whole genome. These analyses revealed the highest intraspecific diversity amongst the ‘Ca.Liberibacter solanacearum’ species, which also has the largest plant host range. We identified sets of core and accessory genes across the genus and within each species and measured the ratio of nonsynonymous to synonymous mutations (dN/dS) across genes. We identified ten genes with evidence of a history of positive selection in theLiberibactergenus, including genes in the Tad complex, which have been previously implicated as being highly divergent in the ‘Ca.L. capsica’ species based on high values of dN. 
    more » « less
  5. Storz, Jay (Ed.)
    Abstract Despite the importance of effective population size (Ne) in evolutionary and conservation biology, it remains unclear what factors have an impact on this quantity. The Nearly Neutral Theory of Molecular Evolution predicts a faster accumulation of deleterious mutations (and thus a higher dN/dS ratio) in populations with small Ne; thus, measuring dN/dS ratios in different groups/species can provide insight into their Ne. Here, we used an exome data set of 1,550 loci from 45 species of marsupials representing 18 of the 22 extant families, to estimate dN/dS ratios across the different branches and families of the marsupial phylogeny. We found a considerable heterogeneity in dN/dS ratios among families and species, which suggests significant differences in their Ne. Furthermore, our multivariate analyses of several life-history traits showed that dN/dS ratios (and thus Ne) are affected by body weight, body length, and weaning age. 
    more » « less