Fair&Share: Fast and Fair Multi-Criteria Selections
- Award ID(s):
- 2007932
- PAR ID:
- 10530933
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400701245
- Page Range / eLocation ID:
- 152 to 162
- Format(s):
- Medium: X
- Location:
- Birmingham United Kingdom
- Sponsoring Org:
- National Science Foundation
More Like this
-
We model the societal task of redistricting political districts as a partitioning problem: Given a set of n points in the plane, each belonging to one of two parties, and a parameter k, our goal is to compute a partition P of the plane into regions so that each region contains roughly s = n/k points. P should satisfy a notion of "local" fairness, which is related to the notion of core, a well-studied concept in cooperative game theory. A region is associated with the majority party in that region, and a point is unhappy in P if it belongs to the minority party. A group D of roughly s contiguous points is called a deviating group with respect to P if majority of points in D are unhappy in P. The partition P is locally fair if there is no deviating group with respect to P.This paper focuses on a restricted case when points lie in 1D. The problem is non-trivial even in this case. We consider both adversarial and "beyond worst-case" settings for this problem. For the former, we characterize the input parameters for which a locally fair partition always exists; we also show that a locally fair partition may not exist for certain parameters. We then consider input models where there are "runs" of red and blue points. For such clustered inputs, we show that a locally fair partition may not exist for certain values of s, but an approximate locally fair partition exists if we allow some regions to have smaller sizes. We finally present a polynomial-time algorithm for computing a locally fair partition if one exists.more » « less
-
In today’s increasingly connected world, graph mining plays a piv- otal role in many real-world application domains, including social network analysis, recommendations, marketing and financial secu- rity. Tremendous efforts have been made to develop a wide range of computational models. However, recent studies have revealed that many widely-applied graph mining models could suffer from potential discrimination. Fairness on graph mining aims to develop strategies in order to mitigate bias introduced/amplified during the mining process. The unique challenges of enforcing fairness on graph mining include (1) theoretical challenge on non-IID nature of graph data, which may invalidate the basic assumption behind many existing studies in fair machine learning, and (2) algorith- mic challenge on the dilemma of balancing model accuracy and fairness. This tutorial aims to (1) present a comprehensive review of state-of-the-art techniques in fairness on graph mining and (2) identify the open challenges and future trends. In particular, we start with reviewing the background, problem definitions, unique challenges and related problems; then we will focus on an in-depth overview of (1) recent techniques in enforcing group fairness, indi- vidual fairness and other fairness notions in the context of graph mining, and (2) future directions in studying algorithmic fairness on graphs. We believe this tutorial could be attractive to researchers and practitioners in areas including data mining, artificial intel- ligence, social science and beneficial to a plethora of real-world application domains.more » « less