This content will become publicly available on March 12, 2025
As populations worldwide show increasing levels of stress, understanding emerging links among stress, inflammation, cognition, and behavior is vital to human and planetary health. We hypothesize that inflammation is a multiscale driver connecting stressors that affect individuals to large-scale societal dysfunction and, ultimately, to planetary-scale environmental impacts. We propose a “central inflammation map” hypothesis to explain how the brain regulates inflammation and how inflammation impairs cognition, emotion, and action. According to our hypothesis, these interdependent inflammatory and neural processes, and the inter-individual transmission of environmental, infectious, and behavioral stressors—amplified via high-throughput digital global communications—can culminate in a multiscale, runaway, feed-forward process that could detrimentally affect human decision-making and behavior at scale, ultimately impairing the ability to address these same stressors. This perspective could provide non-intuitive explanations for behaviors and relationships among cells, organisms, and communities of organisms, potentially including population-level responses to stressors as diverse as global climate change, conflicts, and the COVID-19 pandemic. To illustrate our hypothesis and elucidate its mechanistic underpinnings, we present a mathematical model applicable to the individual and societal levels to test the links among stress, inflammation, control, and healing, including the implications of transmission, intervention (e.g., via lifestyle modification or medication), and resilience. Future research is needed to validate the model’s assumptions and conclusions against empirical benchmarks and to expand the factors/variables employed. Our model illustrates the need for multilayered, multiscale stress mitigation interventions, including lifestyle measures, precision therapeutics, and human ecosystem design. Our analysis shows the need for a coordinated, interdisciplinary, international research effort to understand the multiscale nature of stress. Doing so would inform the creation of interventions that improve individuals’ lives; enhance communities’ resilience to stress; and mitigate the adverse effects of stress on the world.
more » « less- Award ID(s):
- 1654019
- PAR ID:
- 10530958
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Science
- Volume:
- 1
- ISSN:
- 2813-6330
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Scientists have advocated for local interventions, such as creating marine protected areas and implementing fishery restrictions, as ways to mitigate local stressors to limit the effects of climate change on reef-building corals. However, in a literature review, we find little empirical support for the notion of managed resilience. We outline some reasons for why marine protected areas and the protection of herbivorous fish (especially parrotfish) have had little effect on coral resilience. One key explanation is that the impacts of local stressors (e.g., pollution and fishing) are often swamped by the much greater effect of ocean warming on corals. Another is the sheer complexity (including numerous context dependencies) of the five cascading links assumed by the managed-resilience hypothesis. If reefs cannot be saved by local actions alone, then it is time to face reef degradation head-on, by directly addressing anthropogenic climate change—the root cause of global coral decline.more » « less
-
Abstract Context Coral reef resilience is the product of multiple interacting processes that occur across various interacting scales. This complexity presents challenges for identifying solutions to the ongoing worldwide decline of coral reef ecosystems that are threatened by both local and global human stressors.
Objectives We highlight how coral reef resilience is studied at spatial, temporal, and functional scales, and explore emerging technologies that are bringing new insights to our understanding of reef resilience. We then provide a framework for integrating insights across scales by using new and existing technological and analytical tools. We also discuss the implications of scale on both the ecological processes that lead to declines of reefs, and how we study those mechanisms.
Methods To illustrate, we present a case study from Kāneʻohe Bay, Hawaiʻi, USA, linking remotely sensed hyperspectral imagery to within-colony symbiont communities that show differential responses to stress.
Results In doing so, we transform the scale at which we can study coral resilience from a few individuals to entire ecosystems.
Conclusions Together, these perspectives guide best practices for designing management solutions that scale from individuals to ecosystems by integrating multiple levels of biological organization from cellular processes to global patterns of coral degradation and resilience.
-
Synopsis Anthropogenic change has well-documented impacts on stress physiology and behavior across diverse taxonomic groups. Within individual organisms, physiological and behavioral traits often covary at proximate and ultimate timescales. In the context of global change, this means that impacts on physiology can have downstream impacts on behavior, and vice versa. Because all organisms interact with members of their own species and other species within their communities, the effects of humans on one organism can impose indirect effects on one or more other organisms, resulting in cascading effects across interaction networks. Human-induced changes in the stress physiology of one species and the downstream impacts on behavior can therefore interact with the physiological and behavioral responses of other organisms to alter emergent ecological phenomena. Here, we highlight three scenarios in which the stress physiology and behavior of individuals on different sides of an ecological relationship are interactively impacted by anthropogenic change. We discuss host–parasite/pathogen dynamics, predator–prey relationships, and beneficial partnerships (mutualisms and cooperation) in this framework, considering cases in which the effect of stressors on each type of network may be attenuated or enhanced by interactive changes in behavior and physiology. These examples shed light on the ways that stressors imposed at the level of one individual can impact ecological relationships to trigger downstream consequences for behavioral and ecological dynamics. Ultimately, changes in stress physiology on one or both sides of an ecological interaction can mediate higher-level population and community changes due in part to their cascading impacts on behavior. This framework may prove useful for anticipating and potentially mitigating previously underappreciated ecological responses to anthropogenic perturbations in a rapidly changing world.more » « less
-
Abstract Objectives Early-life disadvantage (ELD) relates to lower late-life cognition. However, personality factors, including having an internal locus of control (LOC) or a conscientious personality, relate to resilience and effective stress coping. We explore whether personality factors convey resilience against the negative effects of ELD on cognition, by gender, in Mexico.
Methods Using the 2015 Mexican Health and Aging Study, we estimated expected cognition using multiple ELD markers to identify a subsample in the lowest quartile of expected cognition given ELD (n = 2,086). In this subsample, we estimated cross-sectional associations between personality and having above-median observed cognitive ability (n = 522) using logistic regression.
Results Among those in the lowest quartile of expected cognition, a more internal LOC (β = 0.32 [men] and β = 0.44 [women]) and conscientious personality (β = 0.39 [men] and β = 0.17 [women]) were significantly associated with having above-median cognitive ability in models adjusted for demographic confounders. Larger benefits of conscientiousness were observed for men than women. Associations between personality and having above-median cognitive ability remained statistically significant after further adjustment for health, stress, and cognitive stimulation variables, regardless of gender.
Discussion Personality factors may convey resilience among individuals who experienced ELD, potentially breaking the link between ELD and worse late-life cognition. Structural factors and gender roles may affect how much women benefit from personality factors.
-
Abstract Stress resilience is defined as the ability to rebound to a homeostatic state after exposure to a perturbation. Organisms modulate various physiological mediators to respond to unpredictable changes in their environment. The gut microbiome is a key example of a physiological mediator that coordinates a myriad of host functions including counteracting stressors. Here, we highlight the gut microbiome as a mediator of host stress resilience in the framework of the reactive scope model. The reactive scope model integrates physiological mediators with unpredictable environmental changes to predict how animals respond to stressors. We provide examples of how the gut microbiome responds to stressors within the four ranges of the reactive scope model (i.e., predictive homeostasis, reactive homeostasis, homeostatic overload, and homeostatic failure). We identify measurable metrics of the gut microbiome that could be used to infer the degree to which the host is experiencing chronic stress, including microbial diversity, flexibility, and gene richness. The goal of this perspective piece is to highlight the underutilized potential of measuring the gut microbiome as a mediator of stress resilience in wild animal hosts.