skip to main content


This content will become publicly available on July 1, 2025

Title: Assessment of hydrological parameter uncertainty versus climate projection spread on urban streamflow and floods
Assessing the uncertainty associated with projections of climate change impacts on hydrological processes can be challenging due to multiple sources of uncertainties within and between climate and hydrological models. Here we compare the effects of parameter uncertainty in a hydrological model to inter-model spread from climate projections on hydrological projections of urban streamflow in response to climate change. Four hourly climate model outputs from the RCP8.5 scenario were used as inputs to a distributed hydrologic model (SWMM) calibrated using a Bayesian approach to summarize uncertainty intervals for both model parameters and streamflow predictions. Continuous simulation of 100 years of streamflow generated 90 % prediction intervals for selected exceedance probabilities and flood frequencies prediction intervals from single climate models were compared to the inter climate model spread resulting from a single calibration of the SWMM model. There will be an increase in future flows with exceedance probabilities of 0.5 %-50 % and 2-year floods for all climate projections and all 21st century periods, for the modeled Ohio (USA) watershed. Floods with return periods of ≥ 5 years increase relative to the historical from mid-century (2046–2070) for most climate projections and parameter sets. Across the four climate models, the 90th percentile increase in flows and floods ranges from 17-108 % and 11–63 % respectively. Using multiple calibration parameter sets and climate projections helped capture the most likely hydrologic outcomes, as well as upper and lower bounds of future predictions. For this watershed, hydrological model parameter uncertainty was large relative to inter climate model spread, for near term moderate to high flows and for many flood frequencies. The uncertainty quantification and comparison approach developed here may be helpful in decision-making and design of engineering infrastructure in urban watersheds.  more » « less
Award ID(s):
1805319
PAR ID:
10530973
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Hydrology
Volume:
638
Issue:
C
ISSN:
0022-1694
Page Range / eLocation ID:
131546
Subject(s) / Keyword(s):
urban hydrology parameter sensitivity climate change streamflow discharge stream flood flooding
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study investigates the impact of climate and land use change on the magnitude and timing of streamflow and sediment yield in a snow‐dominated mountainous watershed in Salt Lake County, Utah using a scenario approach and the Hydrological Simulation Program — FORTRAN model for the 2040s (year 2035–2044) and 2090s (year 2085–2094). The climate scenarios were statistically and dynamically downscaled from global climate models. Land use and land cover (LULC) changes were estimated in two ways — from a regional planning scenario and from a deterministic model. Results indicate the mean daily streamflow in the Jordan River watershed will increase by an amount ranging from 11.2% to 14.5% in the 2040s and from 6.8% to 15.3% in the 2090s. The respective increases in sediment load in the 2040s and 2090s is projected to be 6.7% and 39.7% in the canyons and about 7.4% to 14.2% in the Jordan valley. The historical 50th percentile timing of streamflow and sediment load is projected to be shifted earlier by three to four weeks by mid‐century and four to eight weeks by late‐century. The projected streamflow and sediment load results establish a nonlinear relationship with each other and are highly sensitive to projected climate change. The predicted changes in streamflow and sediment yield will have implications for water supply, flood control and stormwater management.

     
    more » « less
  2. null (Ed.)
    Precipitation occurs in two basic forms defined as liquid state and solid state. Different from rain-fed watershed, modeling snow processes is of vital importance in snow-dominated watersheds. The seasonal snowpack is a natural water reservoir, which stores snow water in winter and releases it in spring and summer. The warmer climate in recent decades has led to earlier snowmelt, a decline in snowpack, and change in the seasonality of river flows. The Soil and Water Assessment Tool (SWAT) could be applied in the snow-influenced watershed because of its ability to simultaneously predict the streamflow generated from rainfall and from the melting of snow. The choice of parameters, reference data, and calibration strategy could significantly affect the SWAT model calibration outcome and further affect the prediction accuracy. In this study, SWAT models are implemented in four upland watersheds in the Tulare Lake Basin (TLB) located across the Southern Sierra Nevada Mountains. Three calibration scenarios considering different calibration parameters and reference datasets are applied to investigate the impact of the Parallel Energy Balance Model (ParBal) snow reconstruction data and snow parameters on the streamflow and snow water-equivalent (SWE) prediction accuracy. In addition, the watershed parameters and lapse rate parameters-led equifinality is also evaluated. The results indicate that calibration of the SWAT model with respect to both streamflow and SWE reference data could improve the model SWE prediction reliability in general. Comparatively, the streamflow predictions are not significantly affected by differently lumped calibration schemes. The default snow parameter values capture the extreme high flows better than the other two calibration scenarios, whereas there is no remarkable difference among the three calibration schemes for capturing the extreme low flows. The watershed and lapse rate parameters-induced equifinality affects the flow prediction more (Nash-Sutcliffe Efficiency (NSE) varies between 0.2–0.3) than the SWE prediction (NSE varies less than 0.1). This study points out the remote-sensing-based SWE reconstruction product as a promising alternative choice for model calibration in ungauged snow-influenced watersheds. The streamflow-reconstructed SWE bi-objective calibrated model could improve the prediction reliability of surface water supply change for the downstream agricultural region under the changing climate. 
    more » « less
  3. Abstract The recent intensification of floods and droughts in the Fraser River Basin (FRB) of British Columbia has had profound cultural, ecological, and economic impacts that are expected to be exacerbated further by anthropogenic climate change. In part due to short instrumental runoff records, the long-term stationarity of hydroclimatic extremes in this major North American watershed remains poorly understood, highlighting the need to use high-resolution paleoenvironmental proxies to inform on past streamflow. Here we use a network of tree-ring proxy records to develop 11 subbasin-scale, complementary flood- and drought-season reconstructions, the first of their kind. The reconstructions explicitly target management-relevant flood and drought seasons within each basin, and are examined in tandem to provide an expanded assessment of extreme events across the FRB with immediate implications for water management. We find that past high flood-season flows have been of greater magnitude and occurred in more consecutive years than during the observational record alone. Early 20th century low flows in the drought season were especially severe in both duration and magnitude in some subbasins relative to recent dry periods. Our Fraser subbasin-scale reconstructions provide long-term benchmarks for the natural flood and drought variability prior to anthropogenic forcing. These reconstructions demonstrate that the instrumental streamflow records upon which current management is based likely underestimate the full natural magnitude, duration, and frequency of extreme seasonal flows in the FRB, as well as the potential severity of future anthropogenically forced events. 
    more » « less
  4. Abstract. Assessing impacts of climate change on hydrologic systemsis critical for developing adaptation and mitigation strategies for waterresource management, risk control, and ecosystem conservation practices. Suchassessments are commonly accomplished using outputs from a hydrologic modelforced with future precipitation and temperature projections. The algorithmsused for the hydrologic model components (e.g., runoff generation) canintroduce significant uncertainties into the simulated hydrologic variables.Here, a modeling framework was developed that integrates multiple runoffgeneration algorithms with a routing model and associated parameteroptimizations. This framework is able to identify uncertainties from bothhydrologic model components and climate forcings as well as associatedparameterization. Three fundamentally different runoff generationapproaches, runoff coefficient method (RCM, conceptual), variableinfiltration capacity (VIC, physically based, infiltration excess), andsimple-TOPMODEL (STP, physically based, saturation excess), were coupledwith the Hillslope River Routing model to simulate surface/subsurface runoffand streamflow. A case study conducted in Santa Barbara County, California,reveals increased surface runoff in February and March but decreasedrunoff in other months, a delayed (3 d, median) and shortened (6 d,median) wet season, and increased daily discharge especially for theextremes (e.g., 100-year flood discharge, Q100). The Bayesian modelaveraging analysis indicates that the probability of such an increase can be up to85 %. For projected changes in runoff and discharge, general circulationmodels (GCMs) and emission scenarios are two major uncertainty sources,accounting for about half of the total uncertainty. For the changes inseasonality, GCMs and hydrologic models are two major uncertaintycontributors (∼35 %). In contrast, the contribution ofhydrologic model parameters to the total uncertainty of changes in thesehydrologic variables is relatively small (<6 %), limiting theimpacts of hydrologic model parameter equifinality in climate change impactanalysis. This study provides useful information for practices associatedwith water resources, risk control, and ecosystem conservation and forstudies related to hydrologic model evaluation and climate change impactanalysis for the study region as well as other Mediterranean regions. 
    more » « less
  5. The Gulf Coast watersheds in the United States contain some of the highest levels of biodiversity of all freshwater systems in North America. Developing environmental management policies to protect and preserve these ecosystems makes the study of the impacts of projected climate change on the future hydrologic cycle crucial. We used the Soil and Water Assessment Tool (SWAT) to estimate the potential hydrologic changes for the mid‐21st century (2050s) and the late 21st century (2080s) in the Mobile River, Apalachicola River, and Suwannee River watersheds in the Gulf Coast region of the United States. These estimates are based on downscaled future climate projections from 20 global circulation models (GCMs) under two representative concentration pathways (RCPs 4.5 and 8.5). SWAT models were calibrated and validated using the multi‐algorithm, genetically adaptive multi‐objective (AMALGAM) technique in a high‐performance computing (HPC) cluster. For the Gulf Coast watersheds, the climate is projected to be warmer and wetter. Projected changes in climatic variables are likely to bring large changes in both annual and seasonal hydrologic processes within these watersheds. We found substantial decreases in mean annual streamflow under RCP8.5 during the 2080s, with up to a 13.0% decrease projected for the Suwannee River watershed compared to the present day. Summer streamflow is projected to be substantially lower during the 2080s, with up to a 25.1% decrease projected for the Suwannee River watershed, during a time of high demand of water resources for agricultural, industrial, and ecosystem services. These hydrologic projections are expected to help in making better‐informed decisions for future water resources and ecosystem management in the Gulf Coast region.

     
    more » « less