Despite decades of climate science research, existing climate actions have had limited impacts on mitigating climate change. Efforts to reduce emissions, for example, have yet to spur sufficient action to reduce the most severe effects of climate change. We draw from our experiences as Ojibwe knowledge holders and community members, scientists, and scholars to demonstrate how the lack of recognition of traditional knowledges (TK) within climate science constrains effective climate action and exacerbates climate injustice. Often unrecognized in science and policy arenas, TK generates insights into how justice-driven climate action, rooted in relational interdependencies between humans and older-than-human relatives, can provide new avenues for effectively addressing climate change. We conclude by arguing for a shift toward meaningful and respectful inclusion of plural knowledge systems in climate governance.
more »
« less
National Climate Change Roadmap
Addressing the impact of climate change on agriculture and natural resources requires the translation of science to solutions and policies that support more sustainable forms of land use, efficient agricultural production, and community-engaged research globally. The National Climate Roadmap is a science agenda holistically designed to serve researchers, policymakers, farmers and practitioners. -- from website.
more »
« less
- Award ID(s):
- 1828902
- PAR ID:
- 10530979
- Publisher / Repository:
- Colorado Statue University
- Date Published:
- Subject(s) / Keyword(s):
- Climate change
- Format(s):
- Medium: X
- Institution:
- Colorado State University
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Terrestrial, aquatic, and marine ecosystems regulate climate at local to global scales through exchanges of energy and matter with the atmosphere and assist with climate change mitigation through nature‐based climate solutions. Climate science is no longer a study of the physics of the atmosphere and oceans, but also the ecology of the biosphere. This is the promise of Earth system science: to transcend academic disciplines to enable study of the interacting physics, chemistry, and biology of the planet. However, long‐standing tension in protecting, restoring, and managing forest ecosystems to purposely improve climate evidences the difficulties of interdisciplinary science. For four centuries, forest management for climate betterment was argued, legislated, and ultimately dismissed, when nineteenth century atmospheric scientists narrowly defined climate science to the exclusion of ecology. Today's Earth system science, with its roots in global models of climate, unfolds in similar ways to the past. With Earth system models, geoscientists are again defining the ecology of the Earth system. Here we reframe Earth system science so that the biosphere and its ecology are equally integrated with the fluid Earth to enable Earth system prediction for planetary stewardship. Central to this is the need to overcome an intellectual heritage to the models that elevates geoscience and marginalizes ecology and local land knowledge. The call for kilometer‐scale atmospheric and ocean models, without concomitant scientific and computational investment in the land and biosphere, perpetuates the geophysical view of Earth and will not fully provide the comprehensive actionable information needed for a changing climate.more » « less
-
Technical summary Cities have an increasingly integral role in addressing climate change. To gain a common understanding of solutions, we require adequate and representative data of urban areas, including data on related greenhouse gas emissions, climate threats and of socio-economic contexts. Here, we review the current state of urban data science in the context of climate change, investigating the contribution of urban metabolism studies, remote sensing, big data approaches, urban economics, urban climate and weather studies. We outline three routes for upscaling urban data science for global climate solutions: 1) Mainstreaming and harmonizing data collection in cities worldwide; 2) Exploiting big data and machine learning to scale solutions while maintaining privacy; 3) Applying computational techniques and data science methods to analyse published qualitative information for the systematization and understanding of first-order climate effects and solutions. Collaborative efforts towards a joint data platform and integrated urban services would provide the quantitative foundations of the emerging global urban sustainability science.more » « less
-
Artwork created by children can effectively communicate science content, especially for topics that are of universal concern for the public but may cause apprehension, like climate change. This commentary describes artwork from a youth art contest about climate change in which the winning art was displayed on public buses. Young artists learned about climate science while creating images that adults and youth easily engaged with in public spaces. Thus, we suggest that connecting youth with science through art, and then using youth-generated art to engage the general public in science learning can be an effective vehicle for science communication.more » « less
-
Abstract Anthropogenic climate change threatens the structure and function of ecosystems throughout the globe, but many people are still skeptical of its existence. Traditional “knowledge deficit model” thinking has suggested that providing the public with more facts about climate change will assuage skepticism. However, presenting evidence contrary to prior beliefs can have the opposite effect and result in a strengthening of previously held beliefs, a phenomenon known as biased assimilation or a backfire effect. Given this, strategies for effectively communicating about socioscientific issues that are politically controversial need to be thoroughly investigated. We randomly assigned 184 undergraduates from an environmental science class to one of three experimental conditions in which we exposed them to short videos that employed different messaging strategies: (a) an engaging science lecture, (b) consensus messaging, and (c) elite cues. We measured changes in student perceptions of climate change across five constructs (content knowledge, acceptance of scientific consensus, perceived risk, support for action, and climate identity) before and after viewing videos. Consensus messaging outperformed the other two conditions in increasing student acceptance of the scientific consensus, perceived risk of climate change, and climate identity, suggesting this may be an effective strategy for communicating the gravity of anthropogenic climate change. Elite cues outperformed the engaging science lecture condition in increasing student support for action on climate, with politically conservative students driving this relationship, suggesting that the messenger is more important than the message if changing opinions about the necessity of action on climate change is the desired outcome. Relative to the other conditions, the engaging science lecture did not support change in students' perceptions on climate, but appealing to student respect for authority produced positive results. Notably, we observed no decline in students' acceptance of climate science, indicating that none of the conditions induced a backfire effect.more » « less
An official website of the United States government

