skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Fate of Simple Organics on Titan's Surface: A Theoretical Perspective
Abstract Atmospheric photochemistry on Titan continuously transforms methane and nitrogen gases into various organic compounds. This study explores the fate of these molecules when they land on Titan's surface. Our analytical exploration reveals that most simple organics found in Titan's atmosphere, including all nitriles, triple‐bonded hydrocarbons, and benzene, land as solids. Only a few compounds are in the liquid phase, while only ethylene remains gaseous. For the simple organics that land as solids, we further examine their interactions with Titan's lake liquids. Utilizing principles of buoyancy, we found that flotation can be achieved via porosity‐induced (25%–60% porosity) or capillary force‐induced buoyancy for hydrogen cyanide ices on ethane‐rich lakes. Otherwise, these ices would sink and become lakebed sediments. By evaluating the timescale of flotation, our findings suggest that porosity‐induced flotation of millimeter‐sized and larger sediments is the only plausible mechanism for floating solids to explain the transient “magic islands” phenomena on Titan's lakes.  more » « less
Award ID(s):
2307463
PAR ID:
10531034
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
1
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract For the last century, the source of sulfur in Earth’s very first organisms has remained a fundamental, unsolved enigma. While sulfates and their organic derivatives with sulfur in the S(+VI) oxidation state represent core nutrients in contemporary biochemistry, the limited bioavailability of sulfates during Earth’s early Archean period proposed that more soluble S(+IV) compounds served as the initial source of sulfur for the first terrestrial microorganisms. Here, we reveal via laboratory simulation experiments that the three simplest alkylsulfonic acids—water soluble organic S(+IV) compounds—can be efficiently produced in interstellar, sulfur-doped ices through interaction with galactic cosmic rays. This discovery opens a previously elusive path into the synthesis of vital astrobiological significance and untangles fundamental mechanisms of a facile preparation of sulfur-containing, biorelevant organics in extraterrestrial ices; these molecules can be eventually incorporated into comets and asteroids before their delivery and detection on Earth such as in the Murchison, Tagish Lake, and Allende meteorites along with the carbonaceous asteroid Ryugu. 
    more » « less
  2. Abstract Glycinal (HCOCH2NH2) and acetamide (CH3CONH2) are simple molecular building blocks of biomolecules in prebiotic chemistry, though their origin on early Earth and formation in interstellar media remain a mystery. These molecules are formed with their tautomers in low temperature interstellar model ices upon interaction with simulated galactic cosmic rays. Glycinal and acetamide are accessed via barrierless radical‐radical reactions of vinoxy (⋅CH2CHO) and acetyl (⋅C(O)CH3), and then undergo keto‐enol tautomerization. Exploiting tunable photoionization reflectron time‐of‐flight mass spectroscopy and photoionization efficiency (PIE) curves, these results demonstrate fundamental reaction pathways for the formation of complex organics through non‐equilibrium ice reactions in cold molecular cloud environments. These molecules demonstrate an unconventional starting point for abiotic synthesis of organics relevant to contemporary biomolecules like polypeptides and cell membranes in deep space. 
    more » « less
  3. Abstract Lake deoxygenation is of growing concern because it threatens ecosystem services delivery. Complete deoxygenation, anoxia, is projected to prolong and expand in lakes, promoting the production or release of nutrients, greenhouse gases and metals from the water column and sediments. Accumulation of these compounds cannot be easily predicted thus hindering our capacity to forecast the ecological consequences of global changes on aquatic ecosystems. Here, we used monitoring data of four lakes to develop a novel tool, anaerobic duration, to study anaerobic processes in lake waters. Anaerobic duration explained, as a single predictor, 21–60% of the variation for ammonium, phosphorus and a dissolved organic matter fluorophore. Anaerobic duration could be modeled using only two oxygen profiles and lake bathymetry, making it an easily applicable tool to interpret and extrapolate biogeochemical data. This novel tool thus has the potential to transform widely available oxygen profiles into an ecologically meaningful variable. 
    more » « less
  4. Plant wax compounds preserved in lake sediments are used as proxies for paleohydrologic reconstructions. Despite their presence in lake sediments, little is known about their transport from plants to their deposition in lake sediments. By drawing on the leaf and pollen taphonomy literature combined with sediment focusing models, it is possible to develop several working hypotheses for the transport and deposition of plant waxes in lake sediments. An improved understanding of plant wax transport and deposition into lake sediments is necessary to increase the accuracy of paleohydrologic reconstructions. To better understand the controls on plant wax transport and deposition in lake sediment, we analyzed the sedimentary plant waxes from 3 lakes in the Adirondack Mountains of New York. These lakes were chosen to capture a range of basin-specific properties to evaluate their influences on the transport and deposition of plant wax compounds in surface sediments. We spatially characterized sediment properties with surface sediment samples and high-resolution underwater imaging, acoustically profiled the sub-bottom, and measured temperature profiles. From each site, we measured n-alkanes, bulk organic content (loss-on-ignition), bulk carbon and nitrogen concentrations, C:N ratios, and bulk carbon isotopes. Preliminary n-alkane concentrations and chain length distributions, as well as bulk carbon isotopes, are variable within each lake basin suggesting a mix of aquatic and terrestrial sources. The bulk carbon isotope values for two of the three lakes show a similar range of -2‰ compared to a range of -6.3‰ at the third lake. Likewise, the range of total n-alkane concentrations is much higher in the third lake suggesting that the controls on the distribution of n-alkanes and organic carbon are different between lakes. For terrestrial plant waxes, we find low n-alkane concentrations in sandy nearshore sediments relative to higher n-alkane concentrations in deeper fine-grained sediments. Combined, this information suggests that littoral processes focus organic compounds and fine sediments towards the main depo-center of the lake. These and other observations highlight important relationships between basin-specific properties and processes controlling the transport and deposition of plant wax compounds. 
    more » « less
  5. Numerous temperature and environmental proxies are based on glycerol dialkylglycerol tetraethers (GDGTs), which are membrane lipids commonly found in thewater columns and sediments of lakes. The TEX86 temperature proxy is based onisoprenoid GDGTs, which are produced by members of the archaea, and is used toreconstruct lake surface temperature. Branched GDGTs are lipids produced bybacteria and form the basis of the MBT′5ME temperature proxy. Although manyoutstanding questions still exist regarding proxies based on isoprenoid and branchedGDGTs, both compound classes have been relatively well-studied in lakes. Morerecently, other types of GDGTs and related compounds are increasingly beingreported from lacustrine sediments including hydroxylated GDGTs (OH-GDGTs) andglycerol monoalkyl glycerol tetraethers (GMGTs). In the process of generating lacustrine TEX86 or MBT′5ME temperature records, we noted that OH-GDGTs orGMGTs (or both) are frequently present. The RI-OH, based on OH-GDGTs, recentlyhas been proposed as a temperature proxy in lakes while GMGTs are associatedwith oxygen-deficient environments. Here we examine distributions of OH-GDGTs and GMGTs in a variety of lakes that also have existing TEX86 or MBT′5ME temperature reconstructions. These lakes range from small to large, shallow to deep,tropical to arctic, differ in oxygenation state, and have sedimentary records coveringtimespans from the Holocene to multiple glacial-interglacial cycles. Study lakesinclude El’gygytgyn (arctic Russia), Malawi (tropical southeast Africa), Issyk Kul(Kyrgyzstan), Lake 578 (Greenland), and high elevation lakes in the central Andes (South America). We explore the presence/absence of these compounds incontrasting depositional environments and examine their GDGT distributions inrelationship to temperature variability, oxic/anoxic conditions, hydroclimatefluctuations, and other geochemical/environmental parameters. 
    more » « less