For the last century, the source of sulfur in Earth’s very first organisms has remained a fundamental, unsolved enigma. While sulfates and their organic derivatives with sulfur in the S(+VI) oxidation state represent core nutrients in contemporary biochemistry, the limited bioavailability of sulfates during Earth’s early Archean period proposed that more soluble S(+IV) compounds served as the initial source of sulfur for the first terrestrial microorganisms. Here, we reveal via laboratory simulation experiments that the three simplest alkylsulfonic acids—water soluble organic S(+IV) compounds—can be efficiently produced in interstellar, sulfur-doped ices through interaction with galactic cosmic rays. This discovery opens a previously elusive path into the synthesis of vital astrobiological significance and untangles fundamental mechanisms of a facile preparation of sulfur-containing, biorelevant organics in extraterrestrial ices; these molecules can be eventually incorporated into comets and asteroids before their delivery and detection on Earth such as in the Murchison, Tagish Lake, and Allende meteorites along with the carbonaceous asteroid Ryugu.
This content will become publicly available on January 16, 2025
Atmospheric photochemistry on Titan continuously transforms methane and nitrogen gases into various organic compounds. This study explores the fate of these molecules when they land on Titan's surface. Our analytical exploration reveals that most simple organics found in Titan's atmosphere, including all nitriles, triple‐bonded hydrocarbons, and benzene, land as solids. Only a few compounds are in the liquid phase, while only ethylene remains gaseous. For the simple organics that land as solids, we further examine their interactions with Titan's lake liquids. Utilizing principles of buoyancy, we found that flotation can be achieved via porosity‐induced (25%–60% porosity) or capillary force‐induced buoyancy for hydrogen cyanide ices on ethane‐rich lakes. Otherwise, these ices would sink and become lakebed sediments. By evaluating the timescale of flotation, our findings suggest that porosity‐induced flotation of millimeter‐sized and larger sediments is the only plausible mechanism for floating solids to explain the transient “magic islands” phenomena on Titan's lakes.
more » « less- Award ID(s):
- 2307463
- NSF-PAR ID:
- 10531034
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 1
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract For many glacial lakes with highly permeable sediments, water exchange rates control hydrologic residence times within the sediment‐water interface (SWI) and the removal of reactive compounds such as nitrate, a common pollutant in lakes and groundwater. Here we conducted a series of focused tracer injection experiments in the upper 20 cm of the naturally downwelling SWI in a flow‐through lake on Cape Cod, MA. We systematically varied residence time and reactant controls on nitrate processing, using isotopically labeled15N nitrate to monitor the effect of these changes on nitrate removal via denitrification. The addition of acetate, a labile carbon compound, triggered the lake SWI to switch from net production to net removal of nitrate. When acetate was combined with increased residence time created by controlled reductions in water flux, we observed a fivefold increase in nitrate removal, a 26‐fold increase in N2production, and a 42‐fold increase in N2O production. We demonstrate that water residence time is an important control on the fate of nitrate in these lake SWIs and illustrate that seasonal conditions that alter lake exchange rates and variability in lake carbon may predict dynamic nitrate removal across the SWI. Additionally, observed N2O production during the oxic pore water experiments paired with geophysical characterization of the sediment porosity revealed that the lake SWI has less mobile pores occupying upward of 50% of the total porosity volume, which function as reactive microzones for nitrate processing.
-
Abstract Glycinal (HCOCH2NH2) and acetamide (CH3CONH2) are simple molecular building blocks of biomolecules in prebiotic chemistry, though their origin on early Earth and formation in interstellar media remain a mystery. These molecules are formed with their tautomers in low temperature interstellar model ices upon interaction with simulated galactic cosmic rays. Glycinal and acetamide are accessed via barrierless radical‐radical reactions of vinoxy (⋅CH2CHO) and acetyl (⋅C(O)CH3), and then undergo keto‐enol tautomerization. Exploiting tunable photoionization reflectron time‐of‐flight mass spectroscopy and photoionization efficiency (PIE) curves, these results demonstrate fundamental reaction pathways for the formation of complex organics through non‐equilibrium ice reactions in cold molecular cloud environments. These molecules demonstrate an unconventional starting point for abiotic synthesis of organics relevant to contemporary biomolecules like polypeptides and cell membranes in deep space.
-
Abstract Glycinal (HCOCH2NH2) and acetamide (CH3CONH2) are simple molecular building blocks of biomolecules in prebiotic chemistry, though their origin on early Earth and formation in interstellar media remain a mystery. These molecules are formed with their tautomers in low temperature interstellar model ices upon interaction with simulated galactic cosmic rays. Glycinal and acetamide are accessed via barrierless radical‐radical reactions of vinoxy (⋅CH2CHO) and acetyl (⋅C(O)CH3), and then undergo keto‐enol tautomerization. Exploiting tunable photoionization reflectron time‐of‐flight mass spectroscopy and photoionization efficiency (PIE) curves, these results demonstrate fundamental reaction pathways for the formation of complex organics through non‐equilibrium ice reactions in cold molecular cloud environments. These molecules demonstrate an unconventional starting point for abiotic synthesis of organics relevant to contemporary biomolecules like polypeptides and cell membranes in deep space.
-
Plant wax compounds preserved in lake sediments are used as proxies for paleohydrologic reconstructions. Despite their presence in lake sediments, little is known about their transport from plants to their deposition in lake sediments. By drawing on the leaf and pollen taphonomy literature combined with sediment focusing models, it is possible to develop several working hypotheses for the transport and deposition of plant waxes in lake sediments. An improved understanding of plant wax transport and deposition into lake sediments is necessary to increase the accuracy of paleohydrologic reconstructions. To better understand the controls on plant wax transport and deposition in lake sediment, we analyzed the sedimentary plant waxes from 3 lakes in the Adirondack Mountains of New York. These lakes were chosen to capture a range of basin-specific properties to evaluate their influences on the transport and deposition of plant wax compounds in surface sediments. We spatially characterized sediment properties with surface sediment samples and high-resolution underwater imaging, acoustically profiled the sub-bottom, and measured temperature profiles. From each site, we measured n-alkanes, bulk organic content (loss-on-ignition), bulk carbon and nitrogen concentrations, C:N ratios, and bulk carbon isotopes. Preliminary n-alkane concentrations and chain length distributions, as well as bulk carbon isotopes, are variable within each lake basin suggesting a mix of aquatic and terrestrial sources. The bulk carbon isotope values for two of the three lakes show a similar range of -2‰ compared to a range of -6.3‰ at the third lake. Likewise, the range of total n-alkane concentrations is much higher in the third lake suggesting that the controls on the distribution of n-alkanes and organic carbon are different between lakes. For terrestrial plant waxes, we find low n-alkane concentrations in sandy nearshore sediments relative to higher n-alkane concentrations in deeper fine-grained sediments. Combined, this information suggests that littoral processes focus organic compounds and fine sediments towards the main depo-center of the lake. These and other observations highlight important relationships between basin-specific properties and processes controlling the transport and deposition of plant wax compounds.more » « less