skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-Speed Heterogenous Photodiodes on Silicon Nitride for Integrated Microwave Applications
We demonstrate InGaAs/InAlGaAs/InP waveguide photodiodes on Si3N4with up to 81 GHz 3-dB bandwidth, 0.76 A/W responsivity, and -1.8 dBm and -9 dBm output RF power at 50 GHz and 100 GHz, respectively.  more » « less
Award ID(s):
2023775
PAR ID:
10626920
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optica Publishing Group
Date Published:
ISBN:
978-1-957171-95-1
Page Range / eLocation ID:
FTh3D.5
Format(s):
Medium: X
Location:
Denver, Colorado
Sponsoring Org:
National Science Foundation
More Like this
  1. We report InGaAs/InP based p-i-n photodiodes with an external quantum efficiency (EQE) above 98% from 1510 nm to 1575 nm. For surface normal photodiodes with a diameter of 80 µm, the measured 3-dB bandwidth is 3 GHz. The saturation current is 30.5 mA, with an RF output power of 9.3 dBm at a bias of −17 V at 3 GHz. 
    more » « less
  2. This paper demonstrates the monolithic integration of a substrate-integrated waveguide bandpass filter (BPF) and a low-noise amplifier (LNA) at F-band, fabricated in a 70-nm GaN-on-SiC technology. The three-stage LNA alone achieves a state-of-the-art average noise figure of 3.6 dB over 87–115 GHz. The LNA + BPF exhibits a peak gain of 13.6 dB over a 3 dB bandwidth of 17 GHz from 104 to 121 GHz. The average noise figure is 4.9 dB over 87–115 GHz. The OP1 dB and saturated output power are 17.6dBm and >20 dBm, respectively. 
    more » « less
  3. Abstract Visible‐light‐induced halide‐exchange between halide perovskite and organohalide solvents has been studied in which photoinduced electron transfer from CsPbBr3nanocrystals (NCs) to dihalomethane solvent molecules produces halide anions via reductive dissociation, followed by a spontaneous anion‐exchange. Photogenerated holes in this process are less focused. Here, for CsPbBr3in dibromomethane (DBM), we discover that Br radical (Br⋅) is a key intermediate resulting from the hole oxidation. We successfully trapped Br⋅ with reported methods and found that Br⋅ is continuously generated in DBM under visible light irradiation, hence imperative for catalytic reaction design. Continuous Br⋅ formation within this halide‐exchange process is active for photocatalytic [3+2] cycloaddition for vinylcyclopentane synthesis, a privileged scaffold in medicinal chemistry, with good yield and rationalized diastereoselectivity. The NC photocatalyst is highly recyclable due to Br‐based self‐healing, leading to a particularly economic and neat heterogeneous reaction where the solvent DBM also acts as a co‐catalyst in perovskite photocatalysis. Halide perovskites, notable for efficient solar energy conversion, are demonstrated as exceptional photocatalysts for Br radical‐mediated [3+2] cycloaddition. We envisage such perovskite‐induced Br radical strategy may serve as a powerful chemical tool for developing valuable halogen radical‐involved reactions. 
    more » « less
  4. The high-power performance of a D-band (110–170 GHz) traveling wave amplifier (TWA) is reported. The amplifier was designed and fabricated using a GaN-on-SiC high-electron mobility transistor (HEMT) technology integrated with a substrate integrated waveguide (SIW) structure for low-loss on-chip power combining. Active injection load-pull measurements of both discrete HEMTs as well as the completed MMIC TWA were performed. The discrete HEMT measurements at D-band supplement the available design data for these scaled GaN HEMTs. The TWA achieved a peak power-added efficiency (PAE) of 9.1% at 145 GHz. The available output power exceeded 23.5 dBm from 135-145 GHz, with a maximum output power of 24.7 dBm (295 mW) at 140 GHz. Keywords—millimeter 
    more » « less
  5. This paper introduces a W-band sequential power amplifier (PA) \cite{0th} with a novel output network designed to minimize passive and combiner losses, while reducing the overall footprint compared to conventional sequential and Doherty PAs\cite{1st}. An isolated output combiner sums two PAs operating in two different modes: the main amplifier operates in class AB and the auxiliary amplifier operates in class C. The measured PA achieves a saturated output power ($$\mathbf{P_{sat}}$$) of 13 dBm and a gain of 12.5 dB with 3 dB bandwidth from 79.5 GHz to 94.5 GHz. Additionally, it demonstrates a peak Power Added Efficiency (PAE) of 19.4\% and a 14.6\% PAE at 6 dB power back-off (PBO) at 87.5 GHz. Furthermore, the PA achieves a data rate of 12 Gb/s for a 16QAM signal with an average output power of 5 dBm, an average PAE of 10\%, and an EVM (RMS) of -20 dB. The PA was fabricated in 16-nm FinFet technology with core area of 0.15mm$^2$. To the authors’ knowledge, this PA has the highest PAE at 6dB PBO for CMOS PAs operating in the W-Band. 
    more » « less