Integral imaging (InIm) is useful for passive ranging and 3D visualization of partially-occluded objects. We consider 3D object localization within a scene and in occlusions. 2D localization can be achieved using machine learning and non-machine learning-based techniques. These techniques aim to provide a 2D bounding box around each one of the objects of interest. A recent study uses InIm for the 3D reconstruction of the scene with occlusions and utilizes mutual information (MI) between the bounding box in this 3D reconstructed scene and the corresponding bounding box in the central elemental image to achieve passive depth estimation of partially occluded objects. Here, we improve upon this InIm method by using Bayesian optimization to minimize the number of required 3D scene reconstructions. We evaluate the performance of the proposed approach by analyzing different kernel functions, acquisition functions, and parameter estimation algorithms for Bayesian optimization-based inference for simultaneous depth estimation of objects and occlusion. In our optical experiments, mutual-information-based depth estimation with Bayesian optimization achieves depth estimation with a handful of 3D reconstructions. To the best of our knowledge, this is the first report to use Bayesian optimization for mutual information-based InIm depth estimation.
more »
« less
3D object tracking using integral imaging with mutual information and Bayesian optimization
Integral imaging has proven useful for three-dimensional (3D) object visualization in adverse environmental conditions such as partial occlusion and low light. This paper considers the problem of 3D object tracking. Two-dimensional (2D) object tracking within a scene is an active research area. Several recent algorithms use object detection methods to obtain 2D bounding boxes around objects of interest in each frame. Then, one bounding box can be selected out of many for each object of interest using motion prediction algorithms. Many of these algorithms rely on images obtained using traditional 2D imaging systems. A growing literature demonstrates the advantage of using 3D integral imaging instead of traditional 2D imaging for object detection and visualization in adverse environmental conditions. Integral imaging’s depth sectioning ability has also proven beneficial for object detection and visualization. Integral imaging captures an object’s depth in addition to its 2D spatial position in each frame. A recent study uses integral imaging for the 3D reconstruction of the scene for object classification and utilizes the mutual information between the object’s bounding box in this 3D reconstructed scene and the 2D central perspective to achieve passive depth estimation. We build over this method by using Bayesian optimization to track the object’s depth in as few 3D reconstructions as possible. We study the performance of our approach on laboratory scenes with occluded objects moving in 3D and show that the proposed approach outperforms 2D object tracking. In our experimental setup, mutual information-based depth estimation with Bayesian optimization achieves depth tracking with as few as two 3D reconstructions per frame which corresponds to the theoretical minimum number of 3D reconstructions required for depth estimation. To the best of our knowledge, this is the first report on 3D object tracking using the proposed approach.
more »
« less
- Award ID(s):
- 2141473
- PAR ID:
- 10531197
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 32
- Issue:
- 5
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 7495
- Size(s):
- Article No. 7495
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Three-dimensional objects are commonly represented as 3D boxes in a point-cloud. This representation mimics the well-studied image-based 2D bounding-box detection but comes with additional challenges. Objects in a 3D world do not follow any particular orientation, and box-based detectors have difficulties enumerating all orientations or fitting an axis-aligned bounding box to rotated objects. In this paper, we instead propose to represent, detect, and track 3D objects as points. Our framework, CenterPoint, first detects centers of objects using a keypoint detector and regresses to other attributes, including 3D size, 3D orientation, and velocity. In a second stage, it refines these estimates using additional point features on the object. In CenterPoint, 3D object tracking simplifies to greedy closest-point matching. The resulting detection and tracking algorithm is simple, efficient, and effective. CenterPoint achieved state-of-the-art performance on the nuScenes benchmark for both 3D detection and tracking, with 65.5 NDS and 63.8 AMOTA for a single model. On the Waymo Open Dataset, CenterPoint outperforms all previous single model methods by a large margin and ranks first among all Lidar-only submissions.more » « less
-
Monocular 3D object detection aims to localize 3D bounding boxes in an input single 2D image. It is a highly challenging problem and remains open, especially when no extra information (e.g., depth, lidar and/or multi-frames) can be leveraged in training and/or inference. This paper proposes a simple yet effective formulation for monocular 3D object detection without exploiting any extra information. It presents the MonoCon method which learns Monocular Contexts, as auxiliary tasks in training, to help monocular 3D object detection. The key idea is that with the annotated 3D bounding boxes of objects in an image, there is a rich set of well-posed projected 2D supervision signals available in training, such as the projected corner keypoints and their associated offset vectors with respect to the center of 2D bounding box, which should be exploited as auxiliary tasks in training. The proposed MonoCon is motivated by the Cram\`er–Wold theorem in measure theory at a high level. In experiments, the proposed MonoCon is tested in the KITTI benchmark (car, pedestrian and cyclist). It outperforms all prior arts in the leaderboard on the car category and obtains comparable performance on pedestrian and cyclist in terms of accuracy. Thanks to the simple design, the proposed MonoCon method obtains the fastest inference speed with 38.7 fps in comparisons.more » « less
-
We present a method to map 2D image observations of a scene to a persistent 3D scene representation, enabling novel view synthesis and disentangled representation of the movable and immovable components of the scene. Motivated by the bird’s-eye-view (BEV) representation commonly used in vision and robotics, we propose conditional neural groundplans, ground-aligned 2D feature grids, as persistent and memory-efficient scene representations. Our method is trained self-supervised from unlabeled multi-view observations using differentiable rendering, and learns to complete geometry and appearance of occluded regions. In addition, we show that we can leverage multi-view videos at training time to learn to separately reconstruct static and movable components of the scene from a single image at test time. The ability to separately reconstruct movable objects enables a variety of downstream tasks using simple heuristics, such as extraction of object-centric 3D representations, novel view synthesis, instance-level segmentation, 3D bounding box prediction, and scene editing. This highlights the value of neural groundplans as a backbone for efficient 3D scene understanding models.more » « less
-
Mobile headsets should be capable of understanding 3D physical environments to offer a truly immersive experience for augmented/mixed reality (AR/MR). However, their small form-factor and limited computation resources make it extremely challenging to execute in real-time 3D vision algorithms, which are known to be more compute-intensive than their 2D counterparts. In this paper, we propose DeepMix, a mobility-aware, lightweight, and hybrid 3D object detection framework for improving the user experience of AR/MR on mobile headsets. Motivated by our analysis and evaluation of state-of-the-art 3D object detection models, DeepMix intelligently combines edge-assisted 2D object detection and novel, on-device 3D bounding box estimations that leverage depth data captured by headsets. This leads to low end-to-end latency and significantly boosts detection accuracy in mobile scenarios. A unique feature of DeepMix is that it fully exploits the mobility of headsets to fine-tune detection results and boost detection accuracy. To the best of our knowledge, DeepMix is the first 3D object detection that achieves 30 FPS (i.e., an end-to-end latency much lower than the 100 ms stringent requirement of interactive AR/MR). We implement a prototype of DeepMix on Microsoft HoloLens and evaluate its performance via both extensive controlled experiments and a user study with 30+ participants. DeepMix not only improves detection accuracy by 9.1--37.3% but also reduces end-to-end latency by 2.68--9.15×, compared to the baseline that uses existing 3D object detection models.more » « less
An official website of the United States government
