Coded aperture X-ray computed tomography is a computational imaging technique capable of reconstructing inner structures of an object from a reduced set of X-ray projection measurements. Coded apertures are placed in front of the X-ray sources from different views and thus significantly reduce the radiation dose. This paper introduces coded aperture X-ray computed tomography for robotic X-ray systems which offer positioning flexibility. While single coded-aperture 3D tomography was recently introduced for standard trajectory CT scanning, it is shown that significant gains in imaging performance can be attained by simple modifications in the CT scanning trajectories enabled by emerging dual robotic CT systems. In particular, the subject is fixed on a plane and the CT system uniformly rotates around the
Static coded aperture x-ray tomography was introduced recently where a static illumination pattern is used to interrogate an object with a low radiation dose, from which an accurate 3D reconstruction of the object can be attained computationally. Rather than continuously switching the pattern of illumination with each view angle, as traditionally done, static code computed tomography (CT) places a single pattern for all views. The advantages are many, including the feasibility of practical implementation. This paper generalizes this powerful framework to develop single-scan dual-energy coded aperture spectral tomography that enables material characterization at a significantly reduced exposure level. Two sensing strategies are explored: rapid kV switching with a single-static block/unblock coded aperture, and coded apertures with non-uniform thickness. Both systems rely on coded illumination with a plurality of x-ray spectra created by kV switching or 3D coded apertures. The structured x-ray illumination is projected through the objects of interest and measured with standard x-ray energy integrating detectors. Then, based on the tensor representation of projection data, we develop an algorithm to estimate a full set of synthesized measurements that can be used with standard reconstruction algorithms to accurately recover the object in each energy channel. Simulation and experimental results demonstrate the effectiveness of the proposed cost-effective solution to attain material characterization in low-dose dual-energy CT.
more » « less- Award ID(s):
- 1717578
- PAR ID:
- 10531280
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Applied Optics
- Volume:
- 61
- Issue:
- 6
- ISSN:
- 1559-128X; APOPAI
- Format(s):
- Medium: X Size: Article No. C107
- Size(s):
- Article No. C107
- Sponsoring Org:
- National Science Foundation
More Like this
-
r −axis which is misaligned with the coordinate axes. A single stationary coded aperture is placed on front of the robotic X-ray source above the plane and the corresponding X-ray projections are measured by a two-dimensional detector on the second arm of the robotic system. The compressive measurements with misalignment enable the reconstruction of high-resolution three-dimensional volumetric images from the low-resolution coded projections on the detector at a sub-sampling rate. An efficient algorithm is proposed to generate the rotation matrix with two basic sub-matrices and thus the forward model is formulated. The stationary coded aperture is designed based on the Pearson product-moment correlation coefficient analysis and the direct binary search algorithm is used to obtain the optimized coded aperture. Simulations using simulated datasets show significant gains in reconstruction performance compared to conventional coded aperture CT systems. -
Abstract: Coded aperture X-ray computed tomography (CT) has the potential to revolutionize X-ray tomography systems in medical imaging and air and rail transit security - both areas of global importance. It allows either a reduced set of measurements in X-ray CT without degrada- tion in image reconstruction, or measure multiplexed X-rays to simplify the sensing geometry. Measurement reduction is of particular interest in medical imaging to reduce radiation, and airport security often imposes practical constraints leading to limited angle geometries. Coded aperture compressive X-ray CT places a coded aperture pattern in front of the X-ray source in order to obtain patterned projections onto a detector. Compressive sensing (CS) reconstruction algorithms are then used to recover the image. To date, the coded illumination patterns used in conventional CT systems have been random. This paper addresses the code optimization prob- lem for general tomography imaging based on the point spread function (PSF) of the system, which is used as a measure of the sensing matrix quality which connects to the restricted isom- etry property (RIP) and coherence of the sensing matrix. The methods presented are general, simple to use, and can be easily extended to other imaging systems. Simulations are presented where the peak signal to noise ratios (PSNR) of the reconstructed images using optimized coded apertures exhibit significant gain over those attained by random coded apertures. Additionally, results using real X-ray tomography projections are presented.more » « less
-
Abstract: Coded aperture X-ray computed tomography (CT) has the potential to revolutionize X-ray tomography systems in medical imaging and air and rail transit security - both areas of global importance. It allows either a reduced set of measurements in X-ray CT without degrada- tion in image reconstruction, or measure multiplexed X-rays to simplify the sensing geometry. Measurement reduction is of particular interest in medical imaging to reduce radiation, and airport security often imposes practical constraints leading to limited angle geometries. Coded aperture compressive X-ray CT places a coded aperture pattern in front of the X-ray source in order to obtain patterned projections onto a detector. Compressive sensing (CS) reconstruction algorithms are then used to recover the image. To date, the coded illumination patterns used in conventional CT systems have been random. This paper addresses the code optimization prob- lem for general tomography imaging based on the point spread function (PSF) of the system, which is used as a measure of the sensing matrix quality which connects to the restricted isom- etry property (RIP) and coherence of the sensing matrix. The methods presented are general, simple to use, and can be easily extended to other imaging systems. Simulations are presented where the peak signal to noise ratios (PSNR) of the reconstructed images using optimized coded apertures exhibit significant gain over those attained by random coded apertures. Additionally, results using real X-ray tomography projections are presented.more » « less
-
Coded aperture X-ray CT (CAXCT) is a new low-dose imaging technology that promises far-reaching benefits in industrial and clinical applications. It places various coded apertures (CA) at a time in front of the X-ray source to partially block the radiation. The ill-posed inverse reconstruction problem is then solved using l1-norm-based iterative reconstruction methods. Unfortunately, to attain high-quality reconstructions, the CA patterns must change in concert with the view-angles making the implementation impractical. This paper proposes a simple yet radically different approach to CAXCT, which is coined StaticCodeCT, that uses a single-static CA in the CT gantry, thus making the imaging system amenable for practical implementations. Rather than using conventional compressed sensing algorithms for recovery, we introduce a new reconstruction framework for StaticCodeCT. Namely, we synthesize the missing measurements using low-rank tensor completion principles that exploit the multi-dimensional data correlation and low-rank nature of a 3-way tensor formed by stacking the 2D coded CT projections. Then, we use the FDK algorithm to recover the 3D object. Computational experiments using experimental projection measurements exhibit up to 10% gains in the normalized root mean square distance of the reconstruction using the proposed method compared with those attained by alternative low-dose systems.
-
Spectral computed tomography (SCT) makes use of the spectral dependence of X-ray attenuation in tissues and contrast agents to separate the attenuation data into more than two energy bins. Current SCT detectors are costly and the measured data have low signal to noise ratio due to the detector's narrow bin bandwidth and quantum noise. A new approach called coded aperture compressive X-ray SCT that combines a conventional rotating X-ray CT system with a set of pixelated K-edge coded apertures is introduced. In this method, the amplitude and spectra of the X-ray source are filtered by a particular pattern of K-edge filters in each view angle. Compressed sensing (CS) reconstruction algorithms are then used to recover the spectral CT image from the coded measurements. Simulations results for random coded apertures are shown, and their performance is compared to the use of uncoded measurements.more » « less