Coded aperture X-ray computed tomography is a computational imaging technique capable of reconstructing inner structures of an object from a reduced set of X-ray projection measurements. Coded apertures are placed in front of the X-ray sources from different views and thus significantly reduce the radiation dose. This paper introduces coded aperture X-ray computed tomography for robotic X-ray systems which offer positioning flexibility. While single coded-aperture 3D tomography was recently introduced for standard trajectory CT scanning, it is shown that significant gains in imaging performance can be attained by simple modifications in the CT scanning trajectories enabled by emerging dual robotic CT systems. In particular, the subject is fixed on a plane and the CT system uniformly rotates around the
- Award ID(s):
- 1717578
- PAR ID:
- 10531301
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 30
- Issue:
- 5
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 7677
- Size(s):
- Article No. 7677
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract: Coded aperture X-ray computed tomography (CT) has the potential to revolutionize X-ray tomography systems in medical imaging and air and rail transit security - both areas of global importance. It allows either a reduced set of measurements in X-ray CT without degrada- tion in image reconstruction, or measure multiplexed X-rays to simplify the sensing geometry. Measurement reduction is of particular interest in medical imaging to reduce radiation, and airport security often imposes practical constraints leading to limited angle geometries. Coded aperture compressive X-ray CT places a coded aperture pattern in front of the X-ray source in order to obtain patterned projections onto a detector. Compressive sensing (CS) reconstruction algorithms are then used to recover the image. To date, the coded illumination patterns used in conventional CT systems have been random. This paper addresses the code optimization prob- lem for general tomography imaging based on the point spread function (PSF) of the system, which is used as a measure of the sensing matrix quality which connects to the restricted isom- etry property (RIP) and coherence of the sensing matrix. The methods presented are general, simple to use, and can be easily extended to other imaging systems. Simulations are presented where the peak signal to noise ratios (PSNR) of the reconstructed images using optimized coded apertures exhibit significant gain over those attained by random coded apertures. Additionally, results using real X-ray tomography projections are presented.more » « less
-
Abstract: Coded aperture X-ray computed tomography (CT) has the potential to revolutionize X-ray tomography systems in medical imaging and air and rail transit security - both areas of global importance. It allows either a reduced set of measurements in X-ray CT without degrada- tion in image reconstruction, or measure multiplexed X-rays to simplify the sensing geometry. Measurement reduction is of particular interest in medical imaging to reduce radiation, and airport security often imposes practical constraints leading to limited angle geometries. Coded aperture compressive X-ray CT places a coded aperture pattern in front of the X-ray source in order to obtain patterned projections onto a detector. Compressive sensing (CS) reconstruction algorithms are then used to recover the image. To date, the coded illumination patterns used in conventional CT systems have been random. This paper addresses the code optimization prob- lem for general tomography imaging based on the point spread function (PSF) of the system, which is used as a measure of the sensing matrix quality which connects to the restricted isom- etry property (RIP) and coherence of the sensing matrix. The methods presented are general, simple to use, and can be easily extended to other imaging systems. Simulations are presented where the peak signal to noise ratios (PSNR) of the reconstructed images using optimized coded apertures exhibit significant gain over those attained by random coded apertures. Additionally, results using real X-ray tomography projections are presented.more » « less
-
Coded aperture X-ray CT (CAXCT) is a new low-dose imaging technology that promises far-reaching benefits in industrial and clinical applications. It places various coded apertures (CA) at a time in front of the X-ray source to partially block the radiation. The ill-posed inverse reconstruction problem is then solved using l1-norm-based iterative reconstruction methods. Unfortunately, to attain high-quality reconstructions, the CA patterns must change in concert with the view-angles making the implementation impractical. This paper proposes a simple yet radically different approach to CAXCT, which is coined StaticCodeCT, that uses a single-static CA in the CT gantry, thus making the imaging system amenable for practical implementations. Rather than using conventional compressed sensing algorithms for recovery, we introduce a new reconstruction framework for StaticCodeCT. Namely, we synthesize the missing measurements using low-rank tensor completion principles that exploit the multi-dimensional data correlation and low-rank nature of a 3-way tensor formed by stacking the 2D coded CT projections. Then, we use the FDK algorithm to recover the 3D object. Computational experiments using experimental projection measurements exhibit up to 10% gains in the normalized root mean square distance of the reconstruction using the proposed method compared with those attained by alternative low-dose systems.
-
As the use of X-ray computed tomography (CT) grows in medical diagnosis, so does the concern for the harm a radiation dose can cause and the biological risks it represents. StaticCodeCT is a new low-dose imaging architecture that uses a single-static coded aperture (CA) in a CT gantry. It exploits the highly correlated data in the projection domain to estimate the unobserved measurements on the detector. We previously analyzed the StaticCodeCT system by emulating the effect of the coded mask on experimental CT data. In contrast, this manuscript presents test-bed reconstructions using an experimental cone-beam X-ray CT system with a CA holder. We analyzed the reconstruction quality using three different techniques to manufacture the CAs: metal additive manufacturing, cold casting, and ceramic additive manufacturing. Furthermore, we propose an optimization method to design the CA pattern based on the algorithm developed for the measurement estimation. The obtained results point to the possibility of the real deployment of StaticCodeCT systems in practice.
-
Compressive spectral X-ray imaging (CSXI) introduces a pixelated spectral modulator called K-edge coded aperture (KCA) in front of the X-ray source, which enables both, lower dosage to the subject, as well as the capability of spectral tomography while using low-cost integrating X-ray detectors. CSXI systems generally use hundreds of different spectral modulators, each with a distinct pattern to uniquely modulate the illumination at every view angle. In contrast, this paper introduces the use of a single and static coded aperture placed in a tomosynthesis gantry. The compressive system thus interrogates the subject with a fixed coded illumination pattern on all view angles. The advantages of the system are many including reduced cost and the feasibility of implementation. Given the reduced set of coded measurement and the limited spectral separation ability in the resulting architecture, the nonlinear inverse reconstruction problem results in a highly ill-posed problem. An efficient alternating minimization method with three-dimensional total variation regularization is developed for image reconstruction. Furthermore, rather than simply using a random pattern, the coded aperture is optimized under a uniform sensing criterion that shapes the spatial and spectral pattern of the coded aperture so as to minimize the overall radiation exposure placed on any volumetric area of the patient. This is of particular importance in medical imaging where patients at risk are recommended to have periodical X-ray tomosynthesis screenings. The coded aperture optimization is then posed as a binary programming problem solved by a gradient-based algorithm with equilibrium constraints. Numerical experiments show that spatial and spectral coding used in the proposed system to interrogate the subject not only reduces the radiation dose but it also improves the quality of image reconstruction. Gains close to 5dB in peak signal to noise ratio are observed in simulations. Furthermore, it is shown that the optimization of the KCA can effectively improve the uniformity of X-ray radiation compared to random KCA modulation, thus reducing the radiation dose throughout all volumetric sub-areas of the subject — an objective that is not possible with the use of random KCAs.