skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: EQUI-VOCAL: Synthesizing Queries for Compositional Video Events from Limited User Interactions

We introduce EQUI-VOCAL: a new system that automatically synthesizes queries over videos from limited user interactions. The user only provides a handful of positive and negative examples of what they are looking for. EQUI-VOCAL utilizes these initial examples and additional ones collected through active learning to efficiently synthesize complex user queries. Our approach enables users to find events without database expertise, with limited labeling effort, and without declarative specifications or sketches. Core to EQUI-VOCAL's design is the use of spatio-temporal scene graphs in its data model and query language and a novel query synthesis approach that works on large and noisy video data. Our system outperforms two baseline systems---in terms of F1 score, synthesis time, and robustness to noise---and can flexibly synthesize complex queries that the baselines do not support.

 
more » « less
Award ID(s):
2211133
PAR ID:
10531462
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
VLDB Endowment
Date Published:
Journal Name:
Proceedings of the VLDB Endowment
Volume:
16
Issue:
11
ISSN:
2150-8097
Page Range / eLocation ID:
2714 to 2727
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Querying video data has become increasingly popular and useful. Video queries can be complex, ranging from retrieval tasks (“find me the top videos that have … ”), to analytics (“how many videos contained object X per day?”), to excerpting tasks (“highlight and zoom into scenes with object X near object Y”), or combinations thereof. Results for video queries are still typically shown as either relational data or a primitive collection of clickable thumbnails on a web page. Presenting query results in this form is an impedance mismatch with the video medium: they are cumbersome to skim through and are in a different modality and information density compared to the source data. We describe V2V, a system to efficiently synthesize video results for video queries. V2V returns a fully-edited video, allowing the user to consume results in the same manner as the source videos. A key challenge is that synthesizing video results from a collection of videos is computationally intensive, especially within interactive query response times. To address this, V2V features a grammar to express video transformations in a declarative manner and a heuristic optimizer that improves the efficiency of V2V processing in a manner similar to how databases execute relational queries. Experiments show that our V2V optimizer enables video synthesis to run 3x faster. 
    more » « less
  2. Synthesizing relational queries from data is challenging in the presence of recursion and invented predicates. We propose a fully automated approach to synthesize such queries. Our approach comprises of two steps: it first synthesizes a non-recursive query consistent with the given data, and then identifies recursion schemes in it and thereby generalizes to arbitrary data. This generalization is achieved by an iterative predicate unification procedure which exploits the notion of data provenance to accelerate convergence. In each iteration of the procedure, a constraint solver proposes a candidate query, and a query evaluator checks if the proposed program is consistent with the given data. The data provenance for a failed query allows us to construct additional constraints for the constraint solver and refine the search. We have implemented our approach in a tool named Mobius. On a suite of 21 challenging recursive query synthesis tasks, Mobius outperforms three state-of-the-art baselines Gensynth, ILASP, and Popper, both in terms of runtime and accuracy. We also demonstrate that the synthesized queries generalize well to unseen data. 
    more » « less
  3. When managing wide-area networks, network architects must decide how to balance multiple conflicting metrics, and ensure fair allocations to competing traffic while prioritizing critical traffic. The state of practice poses challenges since architects must precisely encode their intent into formal optimization models using abstract notions such as utility functions, and ad-hoc manually tuned knobs. In this paper, we present the first effort to synthesize optimal network designs with indeterminate objectives using an interactive program-synthesis-based approach. We make three contributions. First, we present comparative synthesis, an interactive synthesis framework which produces near-optimal programs (network designs) through two kinds of queries (Validate and Compare), without an objective explicitly given. Second, we develop the first learning algorithm for comparative synthesis in which a voting-guided learner picks the most informative query in each iteration. We present theoretical analysis of the convergence rate of the algorithm. Third, we implemented Net10Q, a system based on our approach, and demonstrate its effectiveness on four real-world network case studies using black-box oracles and simulation experiments, as well as a pilot user study comprising network researchers and practitioners. Both theoretical and experimental results show the promise of our approach. 
    more » « less
  4. Query rewriting is often a prerequisite for effective query optimization, particularly for poorly-written queries. Prior work on query rewriting has relied on a set of "rules" based on syntactic pattern-matching. Whether relying on manual rules or auto-generated ones, rule-based query rewriters are inherently limited in their ability to handle new query patterns. Their success is limited by the quality and quantity of the rules provided to them. To our knowledge, we present the first synthesis-based query rewriting technique, SlabCity, capable of whole-query optimization without relying on any rewrite rules. SlabCity directly searches the space of SQL queries using a novel query synthesis algorithm that leverages a new concept called query dataflows. We evaluate SlabCity on four workloads, including a newly curated benchmark with more than 1000 real-life queries. We show that not only can SlabCity optimize more queries than state-of-the-art query rewriting techniques, but interestingly, it also leads to queries that are significantly faster than those generated by rule-based systems. 
    more » « less
  5. Recent advancements in deep learning techniques facilitate intelligent-query support in diverse applications, such as content-based image retrieval and audio texturing. Unlike conventional key-based queries, these intelligent queries lack efficient indexing and require complex compute operations for feature matching. To achieve high-performance intelligent querying against massive datasets, modern computing systems employ GPUs in-conjunction with solid-state drives (SSDs) for fast data access and parallel data processing. However, our characterization with various intelligent-query workloads developed with deep neural networks (DNNs), shows that the storage I/O bandwidth is still the major bottleneck that contributes 56%--90% of the query execution time. To this end, we present DeepStore, an in-storage accelerator architecture for intelligent queries. It consists of (1) energy-efficient in-storage accelerators designed specifically for supporting DNN-based intelligent queries, under the resource constraints in modern SSD controllers; (2) a similarity-based in-storage query cache to exploit the temporal locality of user queries for further performance improvement; and (3) a lightweight in-storage runtime system working as the query engine, which provides a simple software abstraction to support different types of intelligent queries. DeepStore exploits SSD parallelisms with design space exploration for achieving the maximal energy efficiency for in-storage accelerators. We validate DeepStore design with an SSD simulator, and evaluate it with a variety of vision, text, and audio based intelligent queries. Compared with the state-of-the-art GPU+SSD approach, DeepStore improves the query performance by up to 17.7×, and energy-efficiency by up to 78.6×. 
    more » « less