We demonstrate EQUI-VOCAL, a system that synthesizes compositional queries over videos from user feedback. EQUI-VOCAL enables users to query a video database for complex events by providing a few positive and negative examples of what they are looking for and labeling a small number of additional system-selected examples. Using those user inputs, EQUI-VOCAL synthesizes declarative queries that can then retrieve additional instances of the desired events. The demonstration makes two contributions: it introduces EQUI-VOCAL’s graphical user interface and enables conference attendees to experiment with EQUI-VOCAL on a variety of queries. Both enable users to gain a better understanding of EQUI-VOCAL’s query synthesis approach and to explore the impact of hyperparameters and label noise on system performance.
more »
« less
EQUI-VOCAL: Synthesizing Queries for Compositional Video Events from Limited User Interactions
We introduce EQUI-VOCAL: a new system that automatically synthesizes queries over videos from limited user interactions. The user only provides a handful of positive and negative examples of what they are looking for. EQUI-VOCAL utilizes these initial examples and additional ones collected through active learning to efficiently synthesize complex user queries. Our approach enables users to find events without database expertise, with limited labeling effort, and without declarative specifications or sketches. Core to EQUI-VOCAL's design is the use of spatio-temporal scene graphs in its data model and query language and a novel query synthesis approach that works on large and noisy video data. Our system outperforms two baseline systems---in terms of F1 score, synthesis time, and robustness to noise---and can flexibly synthesize complex queries that the baselines do not support.
more »
« less
- Award ID(s):
- 2211133
- PAR ID:
- 10531462
- Publisher / Repository:
- VLDB Endowment
- Date Published:
- Journal Name:
- Proceedings of the VLDB Endowment
- Volume:
- 16
- Issue:
- 11
- ISSN:
- 2150-8097
- Page Range / eLocation ID:
- 2714 to 2727
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Complex video queries can be answered by decomposing them into modular subtasks. However, existing video data management systems assume the existence of predefined modules for each subtask. We introduce VOCAL-UDF, a novel self-enhancing system that supports compositional queries over videos without the need for predefined modules. VOCAL-UDF automatically identifies and constructs missing modules and encapsulates them as user-defined functions (UDFs), thus expanding its querying capabilities. To achieve this, we formulate a unified UDF model that leverages large language models (LLMs) to aid in new UDF generation. VOCAL UDF handles a wide range of concepts by supporting both program-based UDFs (i.e., Python functions generated by LLMs) and distilled-model UDFs (lightweight vision models distilled from strong pretrained models). To resolve the inherent ambiguity in user intent, VOCAL-UDF generates multiple candidate UDFs and uses active learning to efficiently select the best one. With the self-enhancing capability, VOCAL-UDF significantly improves query performance across three video datasets.more » « less
-
Synthesizing relational queries from data is challenging in the presence of recursion and invented predicates. We propose a fully automated approach to synthesize such queries. Our approach comprises of two steps: it first synthesizes a non-recursive query consistent with the given data, and then identifies recursion schemes in it and thereby generalizes to arbitrary data. This generalization is achieved by an iterative predicate unification procedure which exploits the notion of data provenance to accelerate convergence. In each iteration of the procedure, a constraint solver proposes a candidate query, and a query evaluator checks if the proposed program is consistent with the given data. The data provenance for a failed query allows us to construct additional constraints for the constraint solver and refine the search. We have implemented our approach in a tool named Mobius. On a suite of 21 challenging recursive query synthesis tasks, Mobius outperforms three state-of-the-art baselines Gensynth, ILASP, and Popper, both in terms of runtime and accuracy. We also demonstrate that the synthesized queries generalize well to unseen data.more » « less
-
Querying video data has become increasingly popular and useful. Video queries can be complex, ranging from retrieval tasks (“find me the top videos that have … ”), to analytics (“how many videos contained object X per day?”), to excerpting tasks (“highlight and zoom into scenes with object X near object Y”), or combinations thereof. Results for video queries are still typically shown as either relational data or a primitive collection of clickable thumbnails on a web page. Presenting query results in this form is an impedance mismatch with the video medium: they are cumbersome to skim through and are in a different modality and information density compared to the source data. We describe V2V, a system to efficiently synthesize video results for video queries. V2V returns a fully-edited video, allowing the user to consume results in the same manner as the source videos. A key challenge is that synthesizing video results from a collection of videos is computationally intensive, especially within interactive query response times. To address this, V2V features a grammar to express video transformations in a declarative manner and a heuristic optimizer that improves the efficiency of V2V processing in a manner similar to how databases execute relational queries. Experiments show that our V2V optimizer enables video synthesis to run 3x faster.more » « less
-
When managing wide-area networks, network architects must decide how to balance multiple conflicting metrics, and ensure fair allocations to competing traffic while prioritizing critical traffic. The state of practice poses challenges since architects must precisely encode their intent into formal optimization models using abstract notions such as utility functions, and ad-hoc manually tuned knobs. In this paper, we present the first effort to synthesize optimal network designs with indeterminate objectives using an interactive program-synthesis-based approach. We make three contributions. First, we present comparative synthesis, an interactive synthesis framework which produces near-optimal programs (network designs) through two kinds of queries (Validate and Compare), without an objective explicitly given. Second, we develop the first learning algorithm for comparative synthesis in which a voting-guided learner picks the most informative query in each iteration. We present theoretical analysis of the convergence rate of the algorithm. Third, we implemented Net10Q, a system based on our approach, and demonstrate its effectiveness on four real-world network case studies using black-box oracles and simulation experiments, as well as a pilot user study comprising network researchers and practitioners. Both theoretical and experimental results show the promise of our approach.more » « less
An official website of the United States government

