This content will become publicly available on July 9, 2025
Despite evolutionary biology’s obsession with natural selection, few studies have evaluated multigenerational series of patterns of selection on a genome-wide scale in natural populations. Here, we report on a 10-y population-genomic survey of the microcrustacean
- Award ID(s):
- 2220696
- NSF-PAR ID:
- 10531543
- Publisher / Repository:
- PNAS
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 121
- Issue:
- 28
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The influence of genetic drift on population dynamics during Pleistocene glacial cycles is well understood, but the role of selection in shaping patterns of genomic variation during these events is less explored. We resequenced whole genomes to investigate how demography and natural selection interact to generate the genomic landscapes of Downy and Hairy Woodpecker, species codistributed in previously glaciated North America. First, we explored the spatial and temporal patterns of genomic diversity produced by neutral evolution. Next, we tested (i) whether levels of nucleotide diversity along the genome are correlated with intrinsic genomic properties, such as recombination rate and gene density, and (ii) whether different demographic trajectories impacted the efficacy of selection. Our results revealed cycles of bottleneck and expansion, and genetic structure associated with glacial refugia. Nucleotide diversity varied widely along the genome, but this variation was highly correlated between the species, suggesting the presence of conserved genomic features. In both taxa, nucleotide diversity was positively correlated with recombination rate and negatively correlated with gene density, suggesting that linked selection played a role in reducing diversity. Despite strong fluctuations in effective population size, the maintenance of relatively large populations during glaciations may have facilitated selection. Under these conditions, we found evidence that the individual demographic trajectory of populations modulated linked selection, with purifying selection being more efficient in removing deleterious alleles in large populations. These results highlight that while genome-wide variation reflects the expected signature of demographic change during climatic perturbations, the interaction of multiple processes produces a predictable and highly heterogeneous genomic landscape.more » « less
-
Abstract We present an analysis of nearly 1000 near-infrared, integrated-light spectra from APOGEE in the inner ∼7 kpc of M31. We utilize full-spectrum fitting with A-LIST simple stellar population spectral templates that represent a population of stars with the same age, [M/H], and [
α /M]. With this, we determine the mean kinematics, metallicities,α abundances, and ages of the stellar populations of M31's bar, bulge, and inner disk (∼4–7 kpc). We find a nonaxisymmetric velocity field in M31 resulting from the presence of a bar. The bulge of M31 is less metal-rich (mean [M/H] = dex) than the disk, features minima in metallicity on either side of the bar ([M/H] ∼ −0.2), and is enhanced inα abundance (mean [α /M] = ). The disk of M31 within ∼7 kpc is enhanced in both metallicity ([M/H] = ) andα abundance ([α /M] = ). Both of these structural components are uniformly old at ≃12 Gyr. We find the mean metallicity increases with distance from the center of M31, with the steepest gradient along the disk major axis (0.043 ± 0.021 dex kpc−1). This gradient is the result of changing light contributions from the bulge and disk. The chemodynamics of stellar populations encodes information about a galaxy’s chemical enrichment, star formation history, and merger history, allowing us to discuss new constraints on M31's formation. Our results provide a stepping stone between our understanding of the Milky Way and other external galaxies. -
Abstract What we mean by species and whether they have any biological reality has been debated since the early days of evolutionary biology. Some biologists even suggest that plant species are created by taxonomists as a subjective, artificial division of nature. However, the nature of plant species has been rarely tested critically with data while ignoring taxonomy. We integrate phenomic and genomic data collected across hundreds of individuals at a continental scale to investigate this question in
Escallonia (Escalloniaceae), a group of plants which includes 40 taxonomic species (the species proposed by taxonomists). We first show that taxonomic species may be questionable as they match poorly to patterns of phenotypic and genetic variation displayed by individuals collected in nature. We then use explicit statistical methods for species delimitation designed for phenotypic and genomic data, and show that plant species do exist inEscallonia as an objective, discrete property of nature independent of taxonomy. We show that such species correspond poorly to current taxonomic species ( ) and that phenomic and genomic data seldom delimit congruent entities ($$< 20\%$$ ). These discrepancies suggest that evolutionary forces additional to gene flow can maintain the cohesion of species. We propose that phenomic and genomic data analyzed on an equal footing build a broader perspective on the nature of plant species by helping delineate different ‘types of species’. Our results caution studies which take the accuracy of taxonomic species for granted and challenge the notion of plant species without empirical evidence. Note: A version of the complete manuscript in Spanish is available in the Supplemental Materials.$$< 20\%$$ -
Hancock, Angela (Ed.)
Abstract Geographic barriers are frequently invoked to explain genetic structuring across the landscape. However, inferences on the spatial and temporal origins of population variation have been largely limited to evolutionary neutral models, ignoring the potential role of natural selection and intrinsic genomic processes known as genomic architecture in producing heterogeneity in differentiation across the genome. To test how variation in genomic characteristics (e.g. recombination rate) impacts our ability to reconstruct general patterns of differentiation between species that cooccur across geographic barriers, we sequenced the whole genomes of multiple bird populations that are distributed across rivers in southeastern Amazonia. We found that phylogenetic relationships within species and demographic parameters varied across the genome in predictable ways. Genetic diversity was positively associated with recombination rate and negatively associated with species tree support. Gene flow was less pervasive in genomic regions of low recombination, making these windows more likely to retain patterns of population structuring that matched the species tree. We further found that approximately a third of the genome showed evidence of selective sweeps and linked selection, skewing genome-wide estimates of effective population sizes and gene flow between populations toward lower values. In sum, we showed that the effects of intrinsic genomic characteristics and selection can be disentangled from neutral processes to elucidate spatial patterns of population differentiation.
-
Abstract Genetic diversity becomes structured among populations over time due to genetic drift and divergent selection. Although population structure is often treated as a uniform underlying factor, recent resequencing studies of wild populations have demonstrated that diversity in many regions of the genome may be structured quite dissimilar to the genome‐wide pattern. Here, we explored the adaptive and nonadaptive causes of such genomic heterogeneity using population‐level, whole genome resequencing data obtained from annual
Mimulus guttatus individuals collected across a rugged environment landscape. We found substantial variation in how genetic differentiation is structured both within and between chromosomes, although, in contrast to other studies, known inversion polymorphisms appear to serve only minor roles in this heterogeneity. In addition, much of the genome can be clustered into eight among‐population genetic differentiation patterns, but only two of these clusters are particularly consistent with patterns of isolation by distance. By performing genotype‐environment association analysis, we also identified genomic intervals where local adaptation to specific climate factors has accentuated genetic differentiation among populations, and candidate genes in these windows indicate climate adaptation may proceed through changes affecting specialized metabolism, drought resistance, and development. Finally, by integrating our findings with previous studies, we show that multiple aspects of plant reproductive biology may be common targets of balancing selection and that variants historically involved in climate adaptation among populations have probably also fuelled rapid adaptation to microgeographic environmental variation within sites.