skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stellar Spin-down in Post-mass-transfer Binary Systems
Abstract Motivated by measurements of the rotation speed of accretor stars in post-mass-transfer (post-MT) systems, we investigate how magnetic braking affects the spin-down of individual stars during binary evolution with theMESAbinarymodule. Unlike the conventional assumption of tidal synchronization coupled with magnetic braking in binaries, we first calculate whether tides are strong enough to synchronize the orbit. Subsequently, this influences the spin-down of stars and the orbital separation. In this study, we apply four magnetic braking prescriptions to reduce the spin angular momentum of the two stars throughout the entire binary evolution simulation. Our findings reveal that despite magnetic braking causing continuous spin-down of the accretor, when the donor begins to transfer material onto the accretor, the accretor can rapidly spin up to its critical rotation rate. After MT, magnetic braking becomes more important in affecting the angular momentum evolution of the stars. Post-MT accretor stars thus serve as a valuable test bed for observing how the magnetic braking prescriptions operate in spinning down stars from their critical rotation, including the saturation regimes of the magnetic braking. The rotation rate of the accretor star, combined with its mass, could provide age information since the cessation of MT. By comparing the models against observations, the magnetic braking prescription by Garraffo et al. is found to better align with the rotation data of post-MT accretors.  more » « less
Award ID(s):
2107738
PAR ID:
10531579
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
971
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 80
Size(s):
Article No. 80
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Wind Roche-lobe overflow (WRLOF) is a mass-transfer mechanism proposed by Mohamed and Podsiadlowski for stellar binaries wherein the wind acceleration zone of the donor star exceeds its Roche-lobe radius, allowing stellar wind material to be transferred to the accretor at enhanced rates. WRLOF may explain characteristics observed in blue lurkers and blue stragglers. While WRLOF has been implemented in rapid population synthesis codes, it has yet to be explored thoroughly in detailed binary models such asMESA(a 1D stellar evolution code), and over a wide range of initial binary configurations. We incorporate WRLOF accretion inMESAto investigate wide low-mass binaries at solar metallicity. We perform a parameter study over the initial orbital periods and stellar masses. In most of the models where we consider angular momentum transfer during accretion, the accretor is spun up to the critical (or breakup) rotation rate. Then we assume the star develops a boosted wind to efficiently reduce the angular momentum so that it could maintain subcritical rotation. Balanced by boosted wind loss, the accretor only gains ∼2% of its total mass, but can maintain a near-critical rotation rate during WRLOF. Notably, the mass-transfer efficiency is significantly smaller than in previous studies in which the rotation of the accretor is ignored. We compare our results to observational data of blue lurkers in M67 and find that the WRLOF mechanism can qualitatively explain the origin of their rapid rotation, their location on the H-R diagram, and their orbital periods. 
    more » « less
  2. ABSTRACT In this paper we present the first set of 3D magnetohydrodynamic (MHD) simulations performed with the riemann geomesh code. We study the dynamics of the magnetically channeled winds of magnetic massive stars in full three dimensions using a code that is uniquely suited to spherical problems. Specifically, we perform isothermal simulations of a smooth wind on a rotating star with a tilted, initially dipolar field. We compare the mass-loss, angular momentum loss, and magnetospheric dynamics of a template star (with the properties that are reminiscent of the O4 supergiant ζ Pup) over a range of rotation rates, magnetic field strengths, and magnetic tilt angles. The simulations are run up to a quasi-steady state and the results are observed to be consistent with the existing literature, showing the episodic centrifugal breakout events of the mass outflow, confined by the magnetic field loops that form the closed magnetosphere of the star. The catalogued results provide perspective on how angular-momentum loss varies for different configurations of rotation rate, magnetic field strength, and large magnetic tilt angles. In agreement with previous 2D MHD studies, we find that high magnetic confinement reduces the overall mass-loss rate, and higher rotation increases the mass-loss rate. This and future studies will be used to estimate the angular-momentum evolution, spin-down time, and mass-loss evolution of magnetic massive stars as a function of magnetic field strength, rotation rate, and dipole tilt. 
    more » « less
  3. The evolution of magnetic braking and dynamo processes in subgiant stars is essential for understanding how these stars lose angular momentum. In this work, we investigate the magnetic braking and dynamo evolution of the G-type subgiant β Hyi to test the hypothesis of weakened magnetic braking and the potential rejuvenation of large-scale magnetic fields. We analyzed spectropolarimetric observations from the polarimetric mode of High Accuracy Radial velocity Planet Searcher (HARPSpol) and combined them with archival X-ray data and asteroseismic properties from Transiting Exoplanet Survey Satellite (TESS) to estimate the current wind-braking torque of β Hyi. Despite experiencing weakened magnetic braking during the second half of its main-sequence lifetime, our results indicate that β Hyi has regained significant magnetic activity and a large-scale magnetic field. This observation aligns with the “born-again” dynamo hypothesis. Furthermore, our estimated wind braking torque is considerably stronger than what would be expected for a star in the weakened magnetic braking regime. This suggests that subgiants with extended convective zones can temporarily re-establish large-scale dynamo action. These results provide critical constraints on stellar rotation models and improve our understanding of the interplay between magnetic field structure, stellar activity cycles, and angular momentum evolution in old solar-type stars. 
    more » « less
  4. ABSTRACT The time evolution of angular momentum and surface rotation of massive stars are strongly influenced by fossil magnetic fields via magnetic braking. We present a new module containing a simple, comprehensive implementation of such a field at the surface of a massive star within the Modules for Experiments in Stellar Astrophysics (mesa) software instrument. We test two limiting scenarios for magnetic braking: distributing the angular momentum loss throughout the star in the first case, and restricting the angular momentum loss to a surface reservoir in the second case. We perform a systematic investigation of the rotational evolution using a grid of OB star models with surface magnetic fields (M⋆ = 5–60 M⊙, Ω/Ωcrit = 0.2–1.0, Bp = 1–20 kG). We then employ a representative grid of B-type star models (M⋆ = 5, 10, 15 M⊙, Ω/Ωcrit = 0.2, 0.5, 0.8, Bp = 1, 3, 10, 30 kG) to compare to the results of a recent self-consistent analysis of the sample of known magnetic B-type stars. We infer that magnetic massive stars arrive at the zero-age main sequence (ZAMS) with a range of rotation rates, rather than with one common value. In particular, some stars are required to have close-to-critical rotation at the ZAMS. However, magnetic braking yields surface rotation rates converging to a common low value, making it difficult to infer the initial rotation rates of evolved, slowly rotating stars. 
    more » « less
  5. Abstract There is an intricate relationship between the organization of large-scale magnetic fields by a stellar dynamo and the rate of angular momentum loss due to magnetized stellar winds. An essential ingredient for the operation of a large-scale dynamo is the Coriolis force, which imprints organizing flows on the global convective patterns and inhibits the complete cancellation of bipolar magnetic regions. Consequently, it is natural to expect a rotational threshold for large-scale dynamo action and for the efficient angular momentum loss that it mediates through magnetic braking. Here we present new observational constraints on magnetic braking for an evolutionary sequence of six early K-type stars. To determine the wind braking torque for each of our targets, we combine spectropolarimetric constraints on the large-scale magnetic field, Lyαor X-ray constraints on the mass-loss rate, as well as uniform estimates of the stellar rotation period, mass, and radius. As identified previously from similar observations of hotter stars, we find that the wind braking torque decreases abruptly by more than an order of magnitude at a critical value of the stellar Rossby number. Given that all of the stars in our sample exhibit clear activity cycles, we suggest that weakened magnetic braking may coincide with the operation of a subcritical stellar dynamo. 
    more » « less