Abstract The recent observation of unusually high thermal conductivity exceeding 1000 W m−1K−1in single‐crystal boron arsenide (BAs) has led to interest in the potential application of this semiconductor for thermal management. Although both the electron/hole high mobilities have been calculated for BAs, there is a lack of experimental investigation of its electronic properties. Here, a photoluminescence (PL) measurement of single‐crystal BAs at different temperatures and pressures is reported. The measurements reveal an indirect bandgap and two donor–acceptor pair (DAP) recombination transitions. Based on first‐principles calculations and time‐of‐flight secondary‐ion mass spectrometry results, the two DAP transitions are confirmed to originate from Si and C impurities occupying shallow energy levels in the bandgap. High‐pressure PL spectra show that the donor level with respect to the conduction band minimum shrinks with increasing pressure, which affects the release of free carriers from defect states. These findings suggest the possibility of strain engineering of the transport properties of BAs for application in electronic devices.
more »
« less
General algorithm for characterization of donor-acceptor pair recombination processes in solid-state materials
Radiative recombination processes can occur in solid-state systems through the pairing of donor and acceptor defects of the lattice. Recently, donor-acceptor pairs (DAP) have been proposed as promising candidates for quantum applications, and their signature has been observed in emerging low-dimensional materials. Therefore, the identification of such processes is gaining interest and requires methods to efficiently and reliably characterize them. Here, we introduce a general algorithm to identify DAP processes starting from the experimental photoluminescence (PL) emission spectrum and basic material parameters, including the lattice structure and dielectric constant. The algorithm recognizes possible DAP transitions from the emission pattern in the spectrum and returns the characteristic energy of the DAP transition and the separation between the donor and acceptor sites. By testing the algorithm on the photoluminescence spectrum of hexagonal boron nitride (hBN), we show that our method is robust against experimental errors and adds new capabilities to the investigation toolbox of semiconductors and their optical properties.
more »
« less
- Award ID(s):
- 2044281
- PAR ID:
- 10531599
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optical Materials Express
- Volume:
- 14
- Issue:
- 9
- ISSN:
- 2159-3930
- Format(s):
- Medium: X Size: Article No. 2122
- Size(s):
- Article No. 2122
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We propose a quantum science platform utilizing the dipole-dipole coupling between donor-acceptor pairs (DAPs) in wide bandgap semiconductors to realize optically controllable, long-range interactions between defects in the solid state. We carry out calculations based on density functional theory (DFT) to investigate the electronic structure and interactions of DAPs formed by various substitutional point-defects in diamond and silicon carbide (SiC). We determine the most stable charge states and evaluate zero phonon lines using constrained DFT and compare our results with those of simple donor-acceptor pair (DAP) models. We show that polarization differences between ground and excited states lead to unusually large electric dipole moments for several DAPs in diamond and SiC. We predict photoluminescence spectra for selected substitutional atoms and show that while B-N pairs in diamond are challenging to control due to their large electron-phonon coupling, DAPs in SiC, especially Al-N pairs, are suitable candidates to realize long-range optically controllable interactions.more » « less
-
Photoluminescence (PL) spectroscopy has been used to study the defect levels in thin film copper indium diselenide (CuInSe2, CIS) which we are developing as the absorber layer for the bottom cell of a monolithically grown perovskite/CuInSe2 tandem solar cell. Temperature and laser power dependent PL measurements of thin film CIS for two different Cu/In ratios (0.66 and 0.80) have been performed. The CIS film with Cu/In = 0.80 shows a prominent donor-to-acceptor peak (DAP) involving a shallow acceptor of binding energy ~22 meV, with phonon replica at ~32 meV spacing. In contrast, PL measurement of CIS film for Cu/In = 0.66 taken at 20 K exhibited an asymmetric and broad PL spectrum with peaks at 0.845 eV and 0.787 eV. Laser intensity dependent PL revealed that the observed peaks 0.845 eV and 0.787 eV shift towards higher energy (aka j-shift) at ~11.7 meV/decade and ~ 8 meV/decade with increase in laser intensity respectively. The asymmetric and broad spectrum together with large j-shift suggests that the observed peaks at 0.845 eV and 0.787 eV were related to band to-tail (BT) and band-to-impurity (BI) transition, respectively. Such a band-tail-related transition originates from the potential fluctuation of defect states at low temperature. The appearance of band related transition in CIS film with Cu/In = 0.66 is the indicator of the presence of large number of charged defect states.more » « less
-
The design/synthesis and characterization of organic donor–acceptor (D–A) dyads can provide precious data allowing to improve the efficiency of classical photo-induced bimolecular interactions/processes. In this report, two novel triplet D–A dyads (4 and 5) were synthesized and fully characterized. While the optical absorption and emission profiles of these new systems exhibit similar spectral structures as that of the triplet donor/sensitizer quinoidal thioamide (QDN), the transient absorption (TA) spectra of these two dyads produced new features that can be associated with triplet transients and charge transfer species. However, the kinetics of the excited-state processes/dynamics is significantly influenced by the geometrical arrangement(s) of donor/acceptor chromophores. Further analysis of the TA data suggests that the dyad with slip-stack geometry (4) is less effective in undergoing both intra- and inter-dyad triplet energy transfer than the dyad with co-facial geometry (5). Subsequently, triplet sensitization of 9,10-diphenylanthracene (DPA) using both dyads led to upconverted photoluminescence via triplet–triplet annihilation of DPA triplet transients. But, it was found that a maximum upconversion quantum yield could be achieved at a low power density using the co-facial type dyad 5. Altogether, these results provide valuable guidance in the design of triplet donor–acceptor dyads, which could be used for light-harvesting/modulation applications.more » « less
-
Intermediate donor–acceptor electronic coupling leads to a brilliant fluorescence behaviour. Charge transfer (CT) is key for molecular photonics, governing the optical properties of chromophores comprising electron-rich and electron-deficient components. In photoexcited dyes with an acceptor– donor–acceptor or donor–acceptor–donor architecture, CT breaks their quadrupolar symmetry and yields dipolar structures manifesting pronounced solvatochromism. Herein, we explore the effects of electronic coupling through biaryl linkers on the excited-state symmetry breaking of such hybrid dyes composed of an electron-rich core, i.e., 1,4-dihydropyrrolo[3,2-b]pyrrole (DHPP), and pyrene substituents that can act as electron acceptors. Experimental and theoretical studies reveal that strengthening the donor–acceptor electronic coupling decreases the CT rates and the propensity for symmetry breaking. We ascribe this unexpected result to effects of electronic coupling on the CT thermodynamics, which in its turn affects the CT kinetics. In cases of intermediate electronic coupling, the pyrene-DHPP conjugates produce fluorescence spectra, spreading over the whole visible range, that in addition to the broad CT emission, show bands from the radiative deactivation of the locally excited states of the donor and the acceptors. Because the radiative deactivation of the low-lying CT states is distinctly slow, fluorescence from upper locally excited states emerge leading to the observed anti- Kasha behaviour. As a result, these dyes exhibit white fluorescence. In addition to demonstrating the multifaceted nature of the effects of electronic coupling on CT dynamics, these chromophores can act as broad-band light sources with practical importance for imaging and photonics.more » « less
An official website of the United States government
