skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Title: Predictability of human mobility during the COVID-19 pandemic in the United States
Abstract Human mobility is fundamental to a range of applications including epidemic control, urban planning, and traffic engineering. While laws governing individual movement trajectories and population flows across locations have been extensively studied, the predictability of population-level mobility during the COVID-19 pandemic driven by specific activities such as work, shopping, and recreation remains elusive. Here we analyze mobility data for six place categories at the US county level from 2020 February 15 to 2021 November 23 and measure how the predictability of these mobility metrics changed during the COVID-19 pandemic. We quantify the time-varying predictability in each place category using an information-theoretic metric, permutation entropy. We find disparate predictability patterns across place categories over the course of the pandemic, suggesting differential behavioral changes in human activities perturbed by disease outbreaks. Notably, predictability change in foot traffic to residential locations is mostly in the opposite direction to other mobility categories. Specifically, visits to residences had the highest predictability during stay-at-home orders in March 2020, while visits to other location types had low predictability during this period. This pattern flipped after the lifting of restrictions during summer 2020. We identify four key factors, including weather conditions, population size, COVID-19 case growth, and government policies, and estimate their nonlinear effects on mobility predictability. Our findings provide insights on how people change their behaviors during public health emergencies and may inform improved interventions in future epidemics.  more » « less
Award ID(s):
2229605
PAR ID:
10531643
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
PNAS Nexus
Volume:
3
Issue:
8
ISSN:
2752-6542
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Benenson, Itzhak (Ed.)
    With the onset of COVID-19 and the resulting shelter in place guidelines combined with remote working practices, human mobility in 2020 has been dramatically impacted. Existing studies typically examine whether mobility in specific localities increases or decreases at specific points in time and relate these changes to certain pandemic and policy events. However, a more comprehensive analysis of mobility change over time is needed. In this paper, we study mobility change in the US through a five-step process using mobility footprint data. (Step 1) Propose the Delta Time Spent in Public Places (ΔTSPP) as a measure to quantify daily changes in mobility for each US county from 2019-2020. (Step 2) Conduct Principal Component Analysis (PCA) to reduce the ΔTSPP time series of each county to lower-dimensional latent components of change in mobility. (Step 3) Conduct clustering analysis to find counties that exhibit similar latent components. (Step 4) Investigate local and global spatial autocorrelation for each component. (Step 5) Conduct correlation analysis to investigate how various population characteristics and behavior correlate with mobility patterns. Results show that by describing each county as a linear combination of the three latent components, we can explain 59% of the variation in mobility trends across all US counties. Specifically, change in mobility in 2020 for US counties can be explained as a combination of three latent components: 1) long-term reduction in mobility, 2) no change in mobility, and 3) short-term reduction in mobility. Furthermore, we find that US counties that are geographically close are more likely to exhibit a similar change in mobility. Finally, we observe significant correlations between the three latent components of mobility change and various population characteristics, including political leaning, population, COVID-19 cases and deaths, and unemployment. We find that our analysis provides a comprehensive understanding of mobility change in response to the COVID-19 pandemic. 
    more » « less
  2. The COVID-19 pandemic has dramatically transformed human mobility patterns. Therefore, human mobility prediction for the “new normal” is crucial to infrastructure redesign, emergency management, and urban planning post the pandemic. This paper aims to predict people’s number of visits to various locations in New York City using COVID and mobility data in the past two years. To quantitatively model the impact of COVID cases on human mobility patterns and predict mobility patterns across the pandemic period, this paper develops a model CCAAT-GCN (Cross- andContext-Attention based Spatial-TemporalGraphConvolutionalNetworks). The proposed model is validated using SafeGraph data in New York City from August 2020 to April 2022. A rich set of baselines are performed to demonstrate the performance of our proposed model. Results demonstrate the superior performance of our proposed method. Also, the attention matrix learned by our model exhibits a strong alignment with the COVID-19 situation and the points of interest within the geographic region. This alignment suggests that the model effectively captures the intricate relationships between COVID-19 case rates and human mobility patterns. The developed model and findings can offer insights into the mobility pattern prediction for future disruptive events and pandemics, so as to assist with emergency preparedness for planners, decision-makers and policymakers. 
    more » « less
  3. Background The surge of telemedicine use during the early stages of the COVID-19 pandemic has been well documented. However, scarce evidence considers the use of telemedicine in the subsequent period. Objective This study aims to evaluate use patterns of video-based telemedicine visits for ambulatory care and urgent care provision over the course of recurring pandemic waves in 1 large health system in New York City (NYC) and what this means for health care delivery. Methods Retrospective electronic health record (EHR) data of patients from January 1, 2020, to February 28, 2022, were used to longitudinally track and analyze telemedicine and in-person visit volumes across ambulatory care specialties and urgent care, as well as compare them to a prepandemic baseline (June-November 2019). Diagnosis codes to differentiate suspected COVID-19 visits from non–COVID-19 visits, as well as evaluating COVID-19–based telemedicine use over time, were compared to the total number of COVID-19–positive cases in the same geographic region (city level). The time series data were segmented based on change-point analysis, and variances in visit trends were compared between the segments. Results The emergence of COVID-19 prompted an early increase in the number of telemedicine visits across the urgent care and ambulatory care settings. This use continued throughout the pandemic at a much higher level than the prepandemic baseline for both COVID-19 and non–COVID-19 suspected visits, despite the fluctuation in COVID-19 cases throughout the pandemic and the resumption of in-person clinical services. The use of telemedicine-based urgent care services for COVID-19 suspected visits showed more variance in response to each pandemic wave, but telemedicine visits for ambulatory care have remained relatively steady after the initial crisis period. During the Omicron wave, the use of all visit types, including in-person activities, decreased. Patients between 25 and 34 years of age were the largest users of telemedicine-based urgent care. Patient satisfaction with telemedicine-based urgent care remained high despite the rapid scaling of services to meet increased demand. Conclusions The trend of the increased use of telemedicine as a means of health care delivery relative to the pre–COVID-19 baseline has been maintained throughout the later pandemic periods despite fluctuating COVID-19 cases and the resumption of in-person care delivery. Overall satisfaction with telemedicine-based care is also high. The trends in telemedicine use suggest that telemedicine-based health care delivery has become a mainstream and sustained supplement to in-person-based ambulatory care, particularly for younger patients, for both urgent and nonurgent care needs. These findings have implications for the health care delivery system, including practice leaders, insurers, and policymakers. Further investigation is needed to evaluate telemedicine adoption by key demographics, identify ongoing barriers to adoption, and explore the impacts of sustained use of telemedicine on health care outcomes and experience. 
    more » « less
  4. Kainz, W.; Manley, E.; Delmelle, E.; Birkin, M.; Gahegan, M.; Kwan, M-P. (Ed.)
    As of March 2021, the State of Florida, U.S.A. had accounted for approximately 6.67% of total COVID-19 (SARS-CoV-2 coronavirus disease) cases in the U.S. The main objective of this research is to analyze mobility patterns during a three month period in summer 2020, when COVID-19 case numbers were very high for three Florida counties, Miami-Dade, Broward, and Palm Beach counties. To investigate patterns, as well as drivers, related to changes in mobility across the tri-county region, a random forest regression model was built using sociodemographic, travel, and built environment factors, as well as COVID-19 positive case data. Mobility patterns declined in each county when new COVID-19 infections began to rise, beginning in mid-June 2020. While the mean number of bar and restaurant visits was lower overall due to closures, analysis showed that these visits remained a top factor that impacted mobility for all three counties, even with a rise in cases. Our modeling results suggest that there were mobility pattern differences between counties with respect to factors relating, for example, to race and ethnicity (different population groups factored differently in each county),as well as social distancing or travel-related factors (e.g., staying at home behaviors) over the two time periods prior to and after the spike of COVID-19 cases. 
    more » « less
  5. Abstract Understanding dynamic human mobility changes and spatial interaction patterns at different geographic scales is crucial for assessing the impacts of non-pharmaceutical interventions (such as stay-at-home orders) during the COVID-19 pandemic. In this data descriptor, we introduce a regularly-updated multiscale dynamic human mobility flow dataset across the United States, with data starting from March 1st, 2020. By analysing millions of anonymous mobile phone users’ visits to various places provided by SafeGraph, the daily and weekly dynamic origin-to-destination (O-D) population flows are computed, aggregated, and inferred at three geographic scales: census tract, county, and state. There is high correlation between our mobility flow dataset and openly available data sources, which shows the reliability of the produced data. Such a high spatiotemporal resolution human mobility flow dataset at different geographic scales over time may help monitor epidemic spreading dynamics, inform public health policy, and deepen our understanding of human behaviour changes under the unprecedented public health crisis. This up-to-date O-D flow open data can support many other social sensing and transportation applications. 
    more » « less