Evaporative drying from porous media is influenced by wettability and porous structures; altering these parameters impacts capillary effects and hydraulic connectivity, thereby achieving slower or faster evaporation. In this study, water was evaporated from a homogeneous porous column created with ~1165 glass (i.e., hydrophilic) or Teflon (i.e., hydrophobic) 2.38-mm-diameter spheres with an applied heat flux of 1000 W/m2 supplied via a solar simulator; each experiment was replicated five times and lasted seven days. This study investigates the combination of altered wettability on evaporation with an imposed heat flux to drive evaporation, while deploying X-ray imaging to measure evaporation fronts. Initial evaporation rates were faster (i.e., ~1.5 times) in glass than in Teflon. Traditionally, evaporation from porous media is categorized into three periods: constant rate, subsequent falling rate and slower rate period. Due to homogeneous porous structure and similar characteristic pore size (i.e., 0.453 mm), capillary effects were limited, resulting in an insignificant constant evaporation rate period. A sharp decrease in evaporation rate (i.e., falling rate period) was observed, followed by the slower rate period characterized by Fick’s law of diffusion. Teflon samples entered the slower rate period after 70 hours compared to 90 hours in glass, and combined with X-ray visualization, implying a lower rate of liquid island formation in the Teflon samples than the glass samples. The evaporative drying front, visualized by X-rays, propagated faster in glass with a final depth (after seven days) of ~30 mm, compared to ~24 mm in Teflon. Permeability was modeled based on the geometry [e.g., 3.163E-9 m2 (Revil, Glover, Pezard, and Zamora model), 3.287E-9 m2 (Critical Path Analysis)] and experimentally measured for both glass (9.5E-10 m2) and Teflon (8.9E-10 m2) samples. Rayleigh numbers (Ra=2380) and Nusselt (Nu=4.1) numbers were calculated for quantifying natural evaporation of water from fully saturated porous media, Bond (Bo=193E-3) and Capillary (Ca=6.203E-8) numbers were calculated and compared with previous studies.
more »
« less
Evaporation Mechanisms and Heat Transfer in Porous Media of Mixed Wettabilities With a Simulated Solar Flux and Forced Convection Through the Media
Abstract An experimental apparatus was designed to study the impacts of wettability on evaporation of water from Ottawa sand. Evaporation rates were measured for: (1) a 5.7-cm-thick layer of hydrophilic Ottawa sand; (2) a 5.7-cm-thick layer with 12% hydrophobic content, consisting of a 0.7-cm-layer of n-Octyltriethoxysilane-coated hydrophobic sand buried 1.8 cm below the surface of hydrophilic sand; and (3) a 5.7-cm-thick layer with mixed wettabilities, consisting of 12% n-Octyltriethoxysilane-coated hydrophobic sand mixed into hydrophilic sand. The sand–water mixtures experienced forced convection above and through the sand layer, while a simulated solar flux (i.e., 112±20 W/m2) was applied. Evaporation from homogeneous porous media is classified into the constant-rate, falling-rate, and slow-rate periods. Wettability affected the observed evaporation mechanisms, including the transition from constant-rate to falling-rate periods. Evaporation entered the falling-rate period at 12%, 20%, and 24% saturations for the all hydrophilic sand, hydrophobic layer, and hydrophobic mixture, respectively. Wettability affected the duration of the experiments, as the all hydrophilic sand, hydrophobic layer, and hydrophobic mixture lasted 17, 20, and 26 trials, respectively. Both experiments with hydrophobic particles lasted longer than the all hydrophilic experiment and had shorter constant-rate evaporation periods, suggesting hydrophobic material interrupts capillary action of water to the soil surface and reduces evaporation. Sand temperatures suggest more evaporation occurred near the test section inlet for higher saturations and the hydrophobic layer experienced more evaporation occur near the outlet. Evaporation fluxes were up to 12× higher than the vapor diffusion flux due to enhanced vapor diffusion and forced convection.
more »
« less
- Award ID(s):
- 1828571
- PAR ID:
- 10531807
- Publisher / Repository:
- ASME Journal of Heat and Mass Transfer
- Date Published:
- Journal Name:
- ASME Journal of Heat and Mass Transfer
- Volume:
- 146
- Issue:
- 10
- ISSN:
- 2832-8450
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Altering soil wettability by inclusion of hydrophobicity could be an effective way to restrict evaporation from soil, thereby conserving water resources. In this study, 4-μL sessile water droplets were evaporated from an artificial soil millipore comprised of three glass (i.e. hydrophilic) and Teflon (i.e. hydrophobic) 2.38-mm-diameter beads. The distance between the beads were kept constant (i.e. center-to-center spacing of 3.1 mm). Experiments were conducted in an environmental chamber at an air temperature of 20°C and 30% and 75% relative humidity (RH). Evaporation rates were faster (i.e. ∼19 minutes and ∼49 minutes at 30% and 75% RH) from hydrophilic pores than the Teflon one (i.e. ∼24 minutes and ∼52 minutes at 30% and 75% RH) due in part to greater air-water contact area. Rupture of liquid droplets during evaporation was analyzed and predictions were made on rupture based on contact line pinning and depinning, projected surface area just before rupture, and pressure difference across liquid-vapor interface. It was observed that, in hydrophilic pore, the liquid droplet was pinned on one bead and the contact line on the other beads continuously decreased by deforming the liquid-vapor interface, though all three gas-liquid-solid contact lines decreased at a marginal rate in hydrophobic pore. For hydrophilic and hydrophobic pores, approximately 1.7 mm2 and 1.8–2 mm2 projected area of the droplet was predicted at 30% and 75% RH just before rupture occurs. Associated pressure difference responsible for rupture was estimated based on the deformation of curvature of liquid-vapor interface.more » « less
-
The Ogallala Aquifer, a primary irrigation water source in the High Plains region of the United States, is declining, thereby necessitating new water conservation strategies. This paper investigates the impact of mixed wettability on the evaporation dynamics of a 10-µl sessile water droplet placed within simulated soil pores comprised of hydrophobic Teflon beads (CA ∼ 108°) and hydrophilic glass (CA ∼ 41°) beads with 2.38-mm diameters, where homogeneous and heterogenous (i.e., mixed hydrophobicity and hydrophilicity) wettability configurations were investigated. Experiments were performed in an environmental chamber where the relative humidity and temperature were 60% ± 0.1% RH and 20 ± 0.4 °C, respectively. Wettability influenced evaporation times, with homogeneous hydrophobic pores (i.e., three Teflon beads) and heterogenous one glass, two Teflon pores having the longest average evaporation times of 40 and 39 min, respectively. Homogeneous hydrophilic pores (i.e., three glass beads) and heterogenous two glass, one Teflon pores exhibited evaporation times of 34 min. Evaporation times for heterogenous combinations trended based on the predominant wettability. Contact angles and the projected length of contact were analyzed from videos to capture pinning and depinning during evaporation. For many cases including hydrophobicity, contact angles were less than 90°, and in some configurations, water would be pinned on a Teflon bead, whereas depinning (i.e., moving) on a glass bead. Stick-slip evaporation was observed, where the evaporating droplet switched between constant contact radius and constant contact area evaporative modes to minimize droplet surface energy. The results suggest wettability alterations in agricultural settings may reduce evaporation.more » « less
-
The primary source of water for crops and livestock in the United States Central High Plains is irrigation from the Ogallala Aquifer. Due to the semi-arid climate of this region, little rainfall contributes to watering crops, thereby resulting in water scarcity. Reducing the evaporation from soil is one approach to conserve the water. In this study, a soil evaporation chamber was designed and constructed to study the impacts of environmental conditions on evaporation from Ottawa sand. Prior to entering the sand test section, compressed air flow was dried in a desiccator then split in two flows before entering the 57mmx228mmx838mm test section, with one airflow flowing above the 57mm thick sand layer and the other below and, subsequently, flowing through the moist sand layer. The percent relative humidity (RH) was measured at the entrance and exit to record the change in relative humidity and, therefore, water content removed from the sand. Using inlet air mass flow rates of air of approximately 1E-4kg/s–2E-4kg/s, temperatures of 28–31oC, and dry air (i.e. 0–1%RH), exit flows of 19–20oC and 80–85%RH were measured. Measured evaporation rates ranging from 3.0E-6kg/s to 5.0E-6kg/s for soil saturation levels of 55–80.5%.more » « less
-
The primary source of water for crops and livestock in the United States Central High Plains is irrigation from the Ogallala Aquifer. Due to the semi-arid climate of this region, little rainfall contributes to watering crops, thereby resulting in water scarcity. Reducing the evaporation from soil is one approach to conserve the water. In this study, a soil evaporation chamber was designed and constructed to study the impacts of environmental conditions on evaporation from Ottawa sand. Prior to entering the sand test section, compressed air flow was dried in a desiccator then split in two flows before entering the 57mmx228mmx838mm test section, with one airflow flowing above the 57mm thick sand layer and the other below and, subsequently, flowing through the moist sand layer. The percent relative humidity (RH) was measured at the entrance and exit to record the change in relative humidity and, therefore, water content removed from the sand. Using inlet air mass flow rates of air of approximately 1E-4kg/s–2E-4kg/s, temperatures of 28–31oC, and dry air (i.e. 0–1%RH), exit flows of 19–20oC and 80–85%RH were measured. Measured evaporation rates ranging from 3.0E-6kg/s to 5.0E-6kg/s for soil saturation levels of 55–80.5%.more » « less
An official website of the United States government

