A<sc>bstract</sc> In this paper we develop a semi-standard Young tableau (SSYT) approach to construct a basis of non-factorizable superamplitudes in$$ \mathcal{N} $$ = 1 massless supersymmetry. This amplitude basis can be directly translated to a basis for higher dimensional supersymmetric operators, yielding both the number of independent operators and their form. We deal with distinguishable (massless) chiral/vector superfields at first, then generalize the result to the indistinguishable case. Finally, we discuss the advantages and disadvantages of this method compared to the previously studied Hilbert series approach.
more »
« less
Exploring supersymmetric wormholes in $$ \mathcal{N} $$ = 2 SYK with chords
A<sc>bstract</sc> A feature the$$ \mathcal{N} $$ = 2 supersymmetric Sachdev-Ye-Kitaev (SYK) model shares with extremal black holes is an exponentially large number of ground states that preserve supersymmetry. In fact, the dimension of the ground state subsector is a finite fraction of the total dimension of the SYK Hilbert space. This fraction has a remarkably simple bulk interpretation as the probability that the zero-temperature wormhole — a supersymmetric Einstein-Rosen bridge — has vanishing length. Using chord techniques, we compute the zero-temperature Hartle-Hawking wavefunction; the results reproduce the ground state count obtained from boundary index computations, including non-perturbative corrections. Along the way, we improve the construction [1] of the super-chord Hilbert space and show that the transfer matrix of the empty wormhole enjoys an enhanced$$ \mathcal{N} $$ = 4 supersymmetry. We also obtain expressions for various two point functions at zero temperature. Finally, we find the expressions for the supercharges acting on more general wormholes with matter and present the superchord algebra.
more »
« less
- Award ID(s):
- 2310429
- PAR ID:
- 10531862
- Publisher / Repository:
- Journal of High Energy Physics
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2023
- Issue:
- 12
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> We studyd= 4,$$ \mathcal{N} $$ ≥ 5 supergravities and their deformation via candidate counterterms, with the purpose to absorb UV divergences. We generalize the earlier studies of deformation and twisted self-duality constraint to the case with unbroken local$$ \mathcal{H} $$ -symmetry in presence of fermions. We find that the deformed action breaks nonlinear local supersymmetry. We show that all known cases of enhanced UV divergence cancellations are explained by nonlinear local supersymmetry. This result implies, in particular, that if$$ \mathcal{N} $$ = 5 supergravity at five loop will turn out to be UV divergent, the deformed theory will be BRST inconsistent. If it will be finite, it will be a consequence of nonlinear local supersymmetry and E7-type duality.more » « less
-
A<sc>bstract</sc> In the standard$$ \mathcal{N} $$ = (4, 4) AdS3/CFT2with symN(T4), as well as the$$ \mathcal{N} $$ = (2, 2) Datta-Eberhardt-Gaberdiel variant with symN(T4/ℤ2), supersymmetric index techniques have not been applied so far to the CFT states with target-space momentum or winding. We clarify that the difficulty lies in a central extension of the SUSY algebra in the momentum and winding sectors, analogous to the central extension on the Coulomb branch of 4d$$ \mathcal{N} $$ = 2 gauge theories. We define modified helicity-trace indices tailored to the momentum and winding sectors, and use them for microstate counting of the corresponding bulk black holes. In the$$ \mathcal{N} $$ = (4, 4) case we reproduce the microstate matching of Larsen and Martinec. In the$$ \mathcal{N} $$ = (2, 2) case we resolve a previous mismatch with the Bekenstein-Hawking formula encountered in the topologically trivial sector by going to certain winding sectors.more » « less
-
A<sc>bstract</sc> Euclidean path integrals for UV-completions ofd-dimensional bulk quantum gravity were recently studied in [1] by assuming that they satisfy axioms of finiteness, reality, continuity, reflection-positivity, and factorization. Sectors$$ {\mathcal{H}}_{\mathcal{B}} $$ of the resulting Hilbert space were then defined for any (d− 2)-dimensional surface$$ \mathcal{B} $$ , where$$ \mathcal{B} $$ may be thought of as the boundary ∂Σ of a bulk Cauchy surface in a corresponding Lorentzian description, and where$$ \mathcal{B} $$ includes the specification of appropriate boundary conditions for bulk fields. Cases where$$ \mathcal{B} $$ was the disjoint unionB⊔Bof two identical (d− 2)-dimensional surfacesBwere studied in detail and, after the inclusion of finite-dimensional ‘hidden sectors,’ were shown to provide a Hilbert space interpretation of the associated Ryu-Takayanagi entropy. The analysis was performed by constructing type-I von Neumann algebras$$ {\mathcal{A}}_L^B $$ ,$$ {\mathcal{A}}_R^B $$ that act respectively at the left and right copy ofBinB⊔B. Below, we consider the case of general$$ \mathcal{B} $$ , and in particular for$$ \mathcal{B} $$ =BL⊔BRwithBL,BRdistinct. For anyBR, we find that the von Neumann algebra atBLacting on the off-diagonal Hilbert space sector$$ {\mathcal{H}}_{B_L\bigsqcup {B}_R} $$ is a central projection of the corresponding type-I von Neumann algebra on the ‘diagonal’ Hilbert space$$ {\mathcal{H}}_{B_L\bigsqcup {B}_L} $$ . As a result, the von Neumann algebras$$ {\mathcal{A}}_L^{B_L} $$ ,$$ {\mathcal{A}}_R^{B_L} $$ defined in [1] using the diagonal Hilbert space$$ {\mathcal{H}}_{B_L\bigsqcup {B}_L} $$ turn out to coincide precisely with the analogous algebras defined using the full Hilbert space of the theory (including all sectors$$ {\mathcal{H}}_{\mathcal{B}} $$ ). A second implication is that, for any$$ {\mathcal{H}}_{B_L\bigsqcup {B}_R} $$ , including the same hidden sectors as in the diagonal case again provides a Hilbert space interpretation of the Ryu-Takayanagi entropy. We also show the above central projections to satisfy consistency conditions that lead to a universal central algebra relevant to all choices ofBLandBR.more » « less
-
A<sc>bstract</sc> We introduce Ward identities for superamplitudes inD-dimensional$$ \mathcal{N} $$ -extended supergravities. These identities help to clarify the relation between linearized superinvariants and superamplitudes. The solutions of these Ward identities for ann-partice superamplitude take a simple universal form for half BPS and non-BPS amplitudes. These solutions involve arbitrary functions of spinor helicity and Grassmann variables for each of thensuperparticles. The dimension of these functions at a given loop order is exactly the same as the dimension of the relevant superspace Lagrangians depending on half-BPS or non-BPS superfields, given by (D− 2)L+ 2 −$$ \mathcal{N} $$ or (D− 2)L+ 2 −$$ 2\mathcal{N} $$ , respectively. This explains why soft limits predictions from superamplitudes and from superspace linearized superinvariants agree.more » « less
An official website of the United States government

