skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Particle Acceleration in Relativistic Alfvénic Turbulence
Abstract Strong magnetically dominated Alfvénic turbulence is an efficient engine of nonthermal particle acceleration in a relativistic collisionless plasma. We argue that in the limit of strong magnetization, the type of energy distribution attained by accelerated particles depends on the relative strengths of turbulent fluctuationsδB0and the guide fieldB0. IfδB0≪B0, the particle magnetic moments are conserved, and the acceleration is provided by magnetic curvature drifts. Curvature acceleration energizes particles in the direction parallel to the magnetic field lines, resulting in log-normal tails of particle energy distribution functions. Conversely, ifδB0≳B0, interactions of energetic particles with intense turbulent structures can scatter particles, creating a population with large pitch angles. In this case, magnetic mirror effects become important, and turbulent acceleration leads to power-law tails of the energy distribution functions.  more » « less
Award ID(s):
2010098
PAR ID:
10531895
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
971
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 106
Size(s):
Article No. 106
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Kinetic simulations of relativistic turbulence have significantly advanced our understanding of turbulent particle acceleration. Recent progress has highlighted the need for an updated acceleration theory that can account for particle acceleration within the plasma’s coherent structures. Here, we investigate how intermittency modeling connects statistical fluctuations in turbulence to regions of high-energy dissipation. This connection is established by employing a generalized She–Leveque model to characterize the exponentsζpfor the structure functions S p l ζ p . The fitting of the scaling exponents provides us with a measure of the codimension of the dissipative structures, for which we subsequently determine the filling fraction. We perform our analysis for a range of magnetizationsσand relative fluctuation amplitudesδB0/B0. We find that increasing values ofσandδB0/B0allow the turbulent cascade to break sheetlike structures into smaller regions of dissipation that resemble chains of flux ropes. However, as their dissipation measure increases, the dissipative regions become less volume filling. With this work, we aim to inform future turbulent acceleration theories that incorporate particle energization from interactions with coherent structures within relativistic turbulence. 
    more » « less
  2. Abstract Relativistic magnetic turbulence has been proposed as a process for producing nonthermal particles in high-energy astrophysics. The particle energization may be contributed by both magnetic reconnection and turbulent fluctuations, but their interplay is poorly understood. It has been suggested that during magnetic reconnection the parallel electric field dominates the particle acceleration up to the lower bound of the power-law particle spectrum, but recent studies show that electric fields perpendicular to the magnetic field can play an important, if not dominant role. In this study, we carry out two-dimensional fully kinetic particle-in-cell simulations of magnetically dominated decaying turbulence in a relativistic pair plasma. For a fixed magnetization parameterσ0 = 20, we find that the injection energyεinjconverges with increasing domain size toεinj ≃ 10mec2. In contrast, the power-law index, the cut-off energy, and the power-law extent increase steadily with domain size. We trace a large number of particles and evaluate the contributions of the work done by the parallel (W) and perpendicular (W) electric fields during both the injection phase and the postinjection phase. We find that during the injection phase, theWcontribution increases with domain size, suggesting that it may eventually dominate injection for a sufficiently large domain. In contrast, on average, both components contribute equally during the postinjection phase, insensitive to the domain size. For high energy (ε ≫ εinj) particles,Wdominates the subsequent energization. These findings may improve our understanding of nonthermal particles and their emissions in astrophysical plasmas. 
    more » « less
  3. Abstract Turbulence driven by active galactic nuclei activity, cluster mergers, and galaxy motion constitutes an attractive energy source for heating the intracluster medium (ICM). How this energy dissipates into the ICM plasma remains unclear, given its low collisionality and high magnetization (precluding viscous heating by Coulomb processes). Kunz et al. proposed a viable heating mechanism based on the anisotropy of the plasma pressure under ICM conditions. The present paper builds upon that work and shows that particles can be heated by large-scale turbulent fluctuations via magnetic pumping. We study how the anisotropy evolves under a range of forcing frequencies, what waves and instabilities are generated, and demonstrate that the particle distribution function acquires a high-energy tail. For this, we perform particle-in-cell simulations where we periodically vary the mean magnetic fieldB(t). WhenB(t) grows (dwindles), a pressure anisotropyP>P(P<P) builds up (PandPare, respectively, the pressures perpendicular and parallel toB(t)). These pressure anisotropies excite mirror (P>P) and oblique firehose (P>P) instabilities, which trap and scatter the particles, limiting the anisotropy, and providing a channel to heat the plasma. The efficiency of this mechanism depends on the frequency of the large-scale turbulent fluctuations and the efficiency of the scattering the instabilities provide in their nonlinear stage. We provide a simplified analytical heating model that captures the phenomenology involved. Our results show that this process can be relevant in dissipating and distributing turbulent energy at kinetic scales in the ICM. 
    more » « less
  4. Abstract We present a case study of the Magnetospheric Multiscale (MMS) observations of the Southern Hemispheric dayside magnetospheric boundaries under southward interplanetary magnetic field direction with strongBycomponent. During this event MMS encountered several magnetic field depressions characterized by enhanced plasma beta and high fluxes of high‐energy electrons and ions at the dusk sector of the southern cusp region that resemble previous Cluster and Polar observations of cusp diamagnetic cavities. Based on the expected maximum magnetic shear model and magnetohydrodynamic simulations, we show that for the present event the diamagnetic cavity‐like structures were formed in an unusual location. Analysis of the composition measurements of ion velocity distribution functions and magnetohydrodynamics simulations show clear evidence of the creation of a new kind of magnetic bottle structures by component reconnection occurring at lower latitudes. We propose that the high‐energy particles trapped in these cavities can sometimes end up in the loss cone and leak out, providing a likely explanation for recent high‐energy particle leakage events observed in the magnetosheath. 
    more » « less
  5. Abstract Collisionless systems often exhibit nonthermal power-law tails in their distribution functions. Interestingly, collisionless plasmas in various physical scenarios (e.g., the ion population of the solar wind) feature av−5tail in their velocity (v) distribution, whose origin has been a long-standing puzzle. We show this power-law tail to be a natural outcome of the collisionless relaxation of driven electrostatic plasmas. Using a quasi-linear analysis of the perturbed Vlasov–Poisson equations, we show that the coarse-grained mean distribution function (DF),f0, follows a quasi-linear diffusion equation with a diffusion coefficientD(v) that depends onvthrough the plasma dielectric constant. If the plasma is isotropically forced on scales larger than the Debye length with a white-noise-like electric field,D(v) ∼v4forσ<v<ωP/k, withσthe thermal velocity,ωPthe plasma frequency, andkthe characteristic wavenumber of the perturbation; the corresponding quasi-steady-statef0develops av−(d+ 2)tail inddimensions (v−5tail in 3D), while the energy (E) distribution develops anE−2tail independent of dimensionality. Any redness of the noise only alters the scaling in the highvend. Nonresonant particles moving slower than the phase velocity of the plasma waves (ωP/k) experience a Debye-screened electric field, and significantly less (power-law suppressed) acceleration than the near-resonant particles. Thus, a Maxwellian DF develops a power-law tail, while its core (v<σ) eventually also heats up but over a much longer timescale. We definitively show that self-consistency (ignored in test-particle treatments) is crucial for the emergence of the universalv−5tail. 
    more » « less