Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Strong magnetically dominated Alfvénic turbulence is an efficient engine of nonthermal particle acceleration in a relativistic collisionless plasma. We argue that in the limit of strong magnetization, the type of energy distribution attained by accelerated particles depends on the relative strengths of turbulent fluctuationsδB0and the guide fieldB0. IfδB0≪B0, the particle magnetic moments are conserved, and the acceleration is provided by magnetic curvature drifts. Curvature acceleration energizes particles in the direction parallel to the magnetic field lines, resulting in log-normal tails of particle energy distribution functions. Conversely, ifδB0≳B0, interactions of energetic particles with intense turbulent structures can scatter particles, creating a population with large pitch angles. In this case, magnetic mirror effects become important, and turbulent acceleration leads to power-law tails of the energy distribution functions.more » « less
-
Abstract In a strongly magnetized, magnetically dominated relativistic plasma, Alfvénic turbulence can extend to scales much smaller than the particle inertial scales. It leads to an energy cascade somewhat analogous to inertial- or kinetic-Alfvén turbulent cascades existing in nonrelativistic space and astrophysical plasmas. Based on phenomenological modeling and particle-in-cell numerical simulations, we propose that the energy spectrum of such relativistic kinetic-scale Alfvénic turbulence is close tok−3or slightly steeper than that due to intermittency corrections or Landau damping. We note the analogy of this spectrum with the Kraichnan spectrum corresponding to the enstrophy cascade in 2D incompressible fluid turbulence. Such turbulence strongly energizes particles in the direction parallel to the background magnetic field, leading to nearly one-dimensional particle momentum distributions. We find that these distributions have universal log-normal statistics.more » « less
-
ABSTRACT Three-dimensional kinetic-scale turbulence is studied numerically in the regime where electrons are strongly magnetized (the ratio of plasma species pressure to magnetic pressure is βe = 0.1 for electrons and βi = 1 for ions). Such a regime is relevant in the vicinity of the solar corona, the Earth’s magnetosheath, and other astrophysical systems. The simulations, performed using the fluid-kinetic spectral plasma solver (sps) code, demonstrate that the turbulent cascade in such regimes can reach scales smaller than the electron inertial scale, and results in the formation of electron-scale current sheets (ESCS). Statistical analysis of the geometrical properties of the detected ESCS is performed using an algorithm based on the medial axis transform. A typical half-thickness of the current sheets is found to be on the order of electron inertial length or below, while their half-length falls between the electron and ion inertial length. The pressure–strain interaction, used as a measure of energy dissipation, exhibits high intermittency, with the majority of the total energy exchange occurring in current structures occupying approximately 20 per cent of the total volume. Some of the current sheets corresponding to the largest pressure–strain interaction are found to be associated with Alfvénic electron jets and magnetic configurations typical of reconnection. These reconnection candidates represent about 1 per cent of all the current sheets identified.more » « less
-
Abstract Relativistic magnetically dominated turbulence is an efficient engine for particle acceleration in a collisionless plasma. Ultrarelativistic particles accelerated by interactions with turbulent fluctuations form nonthermal power-law distribution functions in the momentum (or energy) space,f(γ)dγ∝γ−αdγ, whereγis the Lorenz factor. We argue that in addition to exhibiting non-Gaussian distributions over energies, particles energized by relativistic turbulence also become highly intermittent in space. Based on particle-in-cell numerical simulations and phenomenological modeling, we propose that the bulk plasma density has lognormal statistics, while the density of the accelerated particles,n, has a power-law distribution function, . We argue that the scaling exponents are related asβ≈α+ 1, which is broadly consistent with numerical simulations. Non-space-filling, intermittent distributions of plasma density and energy fluctuations may have implications for plasma heating and for radiation produced by relativistic turbulence.more » « less
-
ABSTRACT We provide evidence that the sunward-propagating half of the solar wind electron halo distribution evolves without scattering in the inner heliosphere. We assume the particles conserve their total energy and magnetic moment, and perform a ‘Liouville mapping’ on electron pitch angle distributions measured by the Parker Solar Probe SPAN-E instrument. Namely, we show that the distributions are consistent with Liouville’s theorem if an appropriate interplanetary potential is chosen. This potential, an outcome of our fitting method, is compared against the radial profiles of proton bulk flow energy. We find that the inferred potential is responsible for nearly 100 per cent of the proton acceleration in the solar wind at heliocentric distances 0.18-0.79 AU. These observations combine to form a coherent physical picture: the same interplanetary potential accounts for the acceleration of the solar wind protons as well as the evolution of the electron halo. In this picture the halo is formed from a sunward-propagating population that originates somewhere in the outer heliosphere by a yet-unknown mechanism.more » « less
-
Abstract We present a phenomenological and numerical study of strong Alfvénic turbulence in a magnetically dominated collisionless relativistic plasma with a strong background magnetic field. In contrast with the nonrelativistic case, the energy in such turbulence is contained in magnetic and electric fluctuations. We argue that such turbulence is analogous to turbulence in a strongly magnetized nonrelativistic plasma in the regime of broken quasi-neutrality. Our 2D particle-in-cell numerical simulations of turbulence in a relativistic pair plasma find that the spectrum of the total energy has the scalingk−3/2, while the difference between the magnetic and electric energies, the so-called residual energy, has the scalingk−2.4. The electric and magnetic fluctuations at scaleℓexhibit dynamic alignment with the alignment angle scaling close to . At scales smaller than the (relativistic) plasma inertial scale, the energy spectrum of relativistic inertial Alfvén turbulence steepens tok−3.5.more » « less
-
Abstract In a collisionless plasma, the energy distribution function of plasma particles can be strongly affected by turbulence. In particular, it can develop a nonthermal power-law tail at high energies. We argue that turbulence with initially relativistically strong magnetic perturbations (magnetization parameterσ≫ 1) quickly evolves into a state with ultrarelativistic plasma temperature but mildly relativistic turbulent fluctuations. We present a phenomenological and numerical study suggesting that in this case, the exponentαin the power-law particle-energy distribution function,f(γ)dγ∝γ−αdγ, depends on magnetic compressibility of turbulence. Our analytic prediction for the scaling exponentαis in good agreement with the numerical results.more » « less
-
null (Ed.)ABSTRACT We present a kinetic stability analysis of the solar wind electron distribution function consisting of the Maxwellian core and the magnetic-field aligned strahl, a superthermal electron beam propagating away from the sun. We use an electron strahl distribution function obtained as a solution of a weakly collisional drift-kinetic equation, representative of a strahl affected by Coulomb collisions but unadulterated by possible broadening from turbulence. This distribution function is essentially non-Maxwellian and varies with the heliospheric distance. The stability analysis is performed with the Vlasov–Maxwell linear solver leopard. We find that depending on the heliospheric distance, the core-strahl electron distribution becomes unstable with respect to sunward-propagating kinetic-Alfvén, magnetosonic, and whistler modes, in a broad range of propagation angles. The wavenumbers of the unstable modes are close to the ion inertial scales, and the radial distances at which the instabilities first appear are on the order of 1 au. However, we have not detected any instabilities driven by resonant wave interactions with the superthermal strahl electrons. Instead, the observed instabilities are triggered by a relative drift between the electron and ion cores necessary to maintain zero electric current in the solar wind frame (ion frame). Contrary to strahl distributions modelled by shifted Maxwellians, the electron strahl obtained as a solution of the kinetic equation is stable. Our results are consistent with the previous studies based on a more restricted solution for the electron strahl.more » « less
-
null (Ed.)Recent in situ measurements by the MMS and Parker Solar Probe missions bring interest to small-scale plasma dynamics (waves, turbulence, magnetic reconnection) in regions where the electron thermal energy is smaller than the magnetic one. Examples of such regions are the Earth’s magnetosheath and the vicinity of the solar corona, and they are also encountered in other astrophysical systems. In this brief review, we consider simple physical models describing plasma dynamics in such low-electron-beta regimes, discuss their conservation laws and their limits of applicability.more » « less
-
null (Ed.)We present a drift kinetic model for the free expansion of a thermal plasma out of a magnetic nozzle. This problem relates to plasma space propulsion systems, natural environments such as the solar wind, and end losses from the expander region of mirror magnetically confined fusion concepts such as the gas dynamic trap. The model incorporates trapped and passing orbit types encountered in the mirror expander geometry and maps to an upstream thermal distribution. This boundary condition and quasineutrality require the generation of an ambipolar potential drop of 5Te=e, forming a thermal barrier for the electrons. The model for the electron and ion velocity distributions and fluid moments is confirmed with data from a fully kinetic simulation. Finally, the model is extended to account for a population of fast sloshing ions arising from neutral beam heating within a magnetic mirror, again resulting in good agreement with a corresponding kinetic simulation.more » « less