Diameter is one of the most basic properties of a geometric object, while Riemann surfaces are one of the most basic geometric objects. Surprisingly, the diameter of compact Riemann surfaces is known exactly only for the sphere and the torus. For higher genuses, only very general but loose upper and lower bounds are available. The problem of calculating the diameter exactly has been intractable since there is no simple expression for the distance between a pair of points on a high-genus surface. Here we prove that the diameters of a class of simple Riemann surfaces known as generalized Bolza surfaces of any genus greater than 1 are equal to the radii of their fundamental polygons. This is the first exact result for the diameter of a compact hyperbolic manifold.
more »
« less
Computing distances on Riemann surfaces
Abstract Riemann surfaces are among the simplest and most basic geometric objects. They appear as key players in many branches of physics, mathematics, and other sciences. Despite their widespread significance, how to compute distances between pairs of points on compact Riemann surfaces is surprisingly unknown, unless the surface is a sphere or a torus. This is because on higher-genus surfaces, the distance formula involves an infimum over infinitely many terms, so it cannot be evaluated in practice. Here we derive a computable distance formula for a broad class of Riemann surfaces. The formula reduces the infimum to a minimum over an explicit set consisting of finitely many terms. We also develop a distance computation algorithm, which cannot be expressed as a formula, but which is more computationally efficient on surfaces with high genuses. We illustrate both the formula and the algorithm in application to generalized Bolza surfaces, which are a particular class of highly symmetric compact Riemann surfaces of any genus greater than 1.
more »
« less
- PAR ID:
- 10531920
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Physics A: Mathematical and Theoretical
- Volume:
- 57
- Issue:
- 34
- ISSN:
- 1751-8113
- Format(s):
- Medium: X Size: Article No. 345201
- Size(s):
- Article No. 345201
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We consider the set of connected surfaces in the 4‐ball with boundary a fixed knot in the 3‐sphere. We define the stabilization distance between two surfaces as the minimal such that we can get from one to the other using stabilizations and destabilizations through surfaces of genus at most . Similarly, we consider a double‐point distance between two surfaces of the same genus that is the minimum over all regular homotopies connecting the two surfaces of the maximal number of double points appearing in the homotopy. To many of the concordance invariants defined using Heegaard Floer homology, we construct an analogous invariant for a pair of surfaces. We show that these give lower bounds on the stabilization distance and the double‐point distance. We compute our invariants for some pairs of deform‐spun slice disks by proving a trace formula on the full infinity knot Floer complex, and by determining the action on knot Floer homology of an automorphism of the connected sum of a knot with itself that swaps the two summands. We use our invariants to find pairs of slice disks with arbitrarily large distance with respect to many of the metrics we consider in this paper. We also answer a slice‐disk analog of Problem 1.105 (B) from Kirby's problem list by showing the existence of non‐0‐cobordant slice disks.more » « less
-
null (Ed.)A bstract We use radial quantization to compute Chern-Simons partition functions on handlebodies of arbitrary genus. The partition function is given by a particular transition amplitude between two states which are defined on the Riemann surfaces that define the (singular) foliation of the handlebody. The final state is a coherent state while on the initial state the holonomy operator has zero eigenvalue. The latter choice encodes the constraint that the gauge fields must be regular everywhere inside the handlebody. By requiring that the only singularities of the gauge field inside the handlebody must be compatible with Wilson loop insertions, we find that the Wilson loop shifts the holonomy of the initial state. Together with an appropriate choice of normalization, this procedure selects a unique state in the Hilbert space obtained from a Kähler quantization of the theory on the constant-radius Riemann surfaces. Radial quantization allows us to find the partition functions of Abelian Chern-Simons theories for handlebodies of arbitrary genus. For non-Abelian compact gauge groups, we show that our method reproduces the known partition function at genus one.more » « less
-
null (Ed.)A bstract The full two-loop amplitudes for five massless states in Type II and Heterotic superstrings are constructed in terms of convergent integrals over the genus-two moduli space of compact Riemann surfaces and integrals of Green functions and Abelian differentials on the surface. The construction combines elements from the BRST cohomology of the pure spinor formulation and from chiral splitting with the help of loop momenta and homology invariance. The α ′ → 0 limit of the resulting superstring amplitude is shown to be in perfect agreement with the previously known amplitude computed in Type II supergravity. Investigations of the α ′ expansion of the Type II amplitude and comparisons with predictions from S-duality are relegated to a first companion paper. A construction from first principles in the RNS formulation of the genus-two amplitude with five external NS states is relegated to a second companion paper.more » « less
-
A<sc>bstract</sc> We compute the gravitational action of a free massive Majorana fermion coupled to two-dimensional gravity on compact Riemann surfaces of arbitrary genus. The structure is similar to the case of the massive scalar. The small-mass expansion of the gravitational yields the Liouville action at zeroth order, and we can identify the Mabuchi action at first order. While the massive Majorana action is a conformal deformation of the massless Majorana CFT, we find an action different from the one given by the David-Distler-Kawai (DDK) ansatz.more » « less
An official website of the United States government
