skip to main content

Search for: All records

Award ID contains: 1741355

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Curvature is a fundamental geometric characteristic of smooth spaces. In recent years different notions of curvature have been developed for combinatorial discrete objects such as graphs. However, the connections between such discrete notions of curvature and their smooth counterparts remain lurking and moot. In particular, it is not rigorously known if any notion of graph curvature converges to any traditional notion of curvature of smooth space. Here we prove that in proper settings the Ollivier–Ricci curvature of random geometric graphs in Riemannian manifolds converges to the Ricci curvature of the manifold. This is the first rigorous result linking curvature of random graphs to curvature of smooth spaces. Our results hold for different notions of graph distances, including the rescaled shortest path distance, and for different graph densities. Here the scaling of the average degree, as a function of the graph size, can range from nearly logarithmic to nearly linear.

    more » « less
  2. Abstract

    Dynamic processes on networks, be it information transfer in the Internet, contagious spreading in a social network, or neural signaling, take place along shortest or nearly shortest paths. Computing shortest paths is a straightforward task when the network of interest is fully known, and there are a plethora of computational algorithms for this purpose. Unfortunately, our maps of most large networks are substantially incomplete due to either the highly dynamic nature of networks, or high cost of network measurements, or both, rendering traditional path finding methods inefficient. We find that shortest paths in large real networks, such as the network of protein-protein interactions and the Internet at the autonomous system level, are not random but are organized according to latent-geometric rules. If nodes of these networks are mapped to points in latent hyperbolic spaces, shortest paths in them align along geodesic curves connecting endpoint nodes. We find that this alignment is sufficiently strong to allow for the identification of shortest path nodes even in the case of substantially incomplete networks, where numbers of missing links exceed those of observable links. We demonstrate the utility of latent-geometric path finding in problems of cellular pathway reconstruction and communication security.

    more » « less
  3. Abstract Consider a set of n vertices, where each vertex has a location in $\mathbb{R}^d$ that is sampled uniformly from the unit cube in $\mathbb{R}^d$ , and a weight associated to it. Construct a random graph by placing edges independently for each vertex pair with a probability that is a function of the distance between the locations and the vertex weights. Under appropriate integrability assumptions on the edge probabilities that imply sparseness of the model, after appropriately blowing up the locations, we prove that the local limit of this random graph sequence is the (countably) infinite random graph on $\mathbb{R}^d$ with vertex locations given by a homogeneous Poisson point process, having weights which are independent and identically distributed copies of limiting vertex weights. Our set-up covers many sparse geometric random graph models from the literature, including geometric inhomogeneous random graphs (GIRGs), hyperbolic random graphs, continuum scale-free percolation, and weight-dependent random connection models. We prove that the limiting degree distribution is mixed Poisson and the typical degree sequence is uniformly integrable, and we obtain convergence results on various measures of clustering in our graphs as a consequence of local convergence. Finally, as a byproduct of our argument, we prove a doubly logarithmic lower bound on typical distances in this general setting. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  4. We compute the leading asymptotics of the logarithm of the number of $d$-regular graphs having at least a fixed positive fraction $c$ of the maximum possible number of triangles, and provide a strong structural description of almost all such graphs. When $d$ is constant, we show that such graphs typically consist of many disjoint $(d+1)$-cliques and an almost triangle-free part. When $d$ is allowed to grow with $n$, we show that such graphs typically consist of very dense sets of size $d+o(d)$ together with an almost triangle-free part. This confirms a conjecture of Collet and Eckmann from 2002 and considerably strengthens their observation that the triangles cannot be totally scattered in typical instances of regular graphs with many triangles. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)