Pyrite is a ubiquitous iron sulfide mineral that is oxidized by trace oxygen. The mineral has been largely absent from global sediments since the rise in oxygen concentration in Earth’s early atmosphere. We analyzed weathering in shale, the most common rock exposed at Earth’s surface, with chemical and microscopic analysis. By looking across scales from 10−9to 102meters, we determined the factors that control pyrite oxidation. Under the atmosphere today, pyrite oxidation is rate-limited by diffusion of oxygen to the grain surface and regulated by large-scale erosion and clast-scale fracturing. We determined that neither iron- nor sulfur-oxidizing microorganisms control global pyrite weathering fluxes despite their ability to catalyze the reaction. This multiscale picture emphasizes that fracturing and erosion are as important as atmospheric oxygen in limiting pyrite reactivity over Earth’s history.
more »
« less
Trends in estuarine pyrite formation point to an alternative model for Paleozoic pyrite burial
- Award ID(s):
- 1756877
- PAR ID:
- 10532028
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Geochimica et Cosmochimica Acta
- Volume:
- 374
- Issue:
- C
- ISSN:
- 0016-7037
- Page Range / eLocation ID:
- 51 to 71
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The formation and fate of pyrite (FeS 2 ) modulates global iron, sulfur, carbon, and oxygen biogeochemical cycles and has done so since early in Earth’s geological history. A longstanding paradigm is that FeS 2 is stable at low temperature and is unavailable to microorganisms in the absence of oxygen and oxidative weathering. Here, we show that methanogens can catalyze the reductive dissolution of FeS 2 at low temperature (≤38 °C) and utilize dissolution products to meet cellular iron and sulfur demands associated with the biosynthesis of simple and complex co-factors. Direct access to FeS 2 is required to catalyze its reduction and/or to assimilate iron monosulfide that likely forms through coupled reductive dissolution and precipitation, consistent with close associations observed between cells and FeS 2 . These findings demonstrate that FeS 2 is bioavailable to anaerobic methanogens and can be mobilized in low temperature anoxic environments. Given that methanogens evolved at least 3.46 Gya, these data indicate that the microbial contribution to the iron and sulfur cycles in ancient and contemporary anoxic environments may be more complex and robust than previously recognized, with impacts on the sources and sinks of iron and sulfur and other bio-essential and thiophilic elements such as nickel and cobalt.more » « less
-
Abstract Radiofrequency (RF) heating is a new, less invasive alternative to invasive heating methods that use nanoparticles for tumour therapy. But pinpoint local heating is still hard. Molecular interactions form a hybrid structure with unique electrical characteristics that enable RF heating in this work, which explores RF heating in a biological cell (yeast)‐2D FeS2system. Substantial processes have been uncovered via experimental investigations and density functional theory (DFT) computations. At 3 W and 50 MHz, RF heating reaches 54°C in 40 s, which is enough to kill yeast cells, while current‐voltage measurements reveal ionic diode‐like properties. Interactions between yeast lipid molecules and 2D FeSk, as shown by density‐functional theory calculations, cause an imbalance in the distribution of charges and the creation of polar, conductive channels. Insights into biological heating applications based on radio frequency (RF) technology are offered by this work, which lays forth a framework for investigating 2D material‐biomolecule interactions.more » « less
An official website of the United States government

