skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: Enhanced Non‐Invasive Radio Frequency Heating Using 2D Pyrite (Pyritene)
Abstract Radiofrequency (RF) heating is a new, less invasive alternative to invasive heating methods that use nanoparticles for tumour therapy. But pinpoint local heating is still hard. Molecular interactions form a hybrid structure with unique electrical characteristics that enable RF heating in this work, which explores RF heating in a biological cell (yeast)‐2D FeS2system. Substantial processes have been uncovered via experimental investigations and density functional theory (DFT) computations. At 3 W and 50 MHz, RF heating reaches 54°C in 40 s, which is enough to kill yeast cells, while current‐voltage measurements reveal ionic diode‐like properties. Interactions between yeast lipid molecules and 2D FeSk, as shown by density‐functional theory calculations, cause an imbalance in the distribution of charges and the creation of polar, conductive channels. Insights into biological heating applications based on radio frequency (RF) technology are offered by this work, which lays forth a framework for investigating 2D material‐biomolecule interactions.  more » « less
Award ID(s):
2329067
PAR ID:
10638981
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
RSC
Date Published:
Journal Name:
Small Methods
Volume:
9
Issue:
7
ISSN:
2366-9608
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Chemical modification is a powerful strategy for tuning the electronic properties of 2D semiconductors. Here we report the electrophilic trifluoromethylation of 2D WSe2and MoS2under mild conditions using the reagent trifluoromethyl thianthrenium triflate (TTT). Chemical characterization and density functional theory calculations reveal that the trifluoromethyl groups bind covalently to surface chalcogen atoms as well as oxygen substitution sites. Trifluoromethylation induces p‐type doping in the underlying 2D material, enabling the modulation of charge transport and optical emission properties in WSe2. This work introduces a versatile and efficient method for tailoring the optical and electronic properties of 2D transition metal dichalcogenides. 
    more » « less
  2. Abstract Microrobots hold immense potential in biomedical applications, including drug delivery, disease diagnostics, and minimally invasive surgeries. However, two key challenges hinder their clinical translation: achieving scalable and precision fabrication, and enabling non‐invasive imaging and tracking within deep biological tissues. Magnetic particle imaging (MPI), a cutting‐edge imaging modality, addresses these challenges by detecting the magnetization of nanoparticles and visualizing superparamagnetic nanoparticles (SPIONs) with sub‐millimeter resolution, free from interference by biological tissues. This capability makes MPI an ideal tool for tracking magnetic microrobots in deep tissue environments. In this study, “TriMag” microrobots are introduced: 3D‐printed microrobots with three integrated magnetic functionalities—magnetic actuation, magnetic particle imaging, and magnetic hyperthermia. The TriMag microrobots are fabricated using an innovative method that combines two‐photon lithography for 3D printing biocompatible hydrogel structures with in situ chemical reactions to embed the hydrogel scaffold with Fe3O4nanoparticles for good MPI contrast and CoFe2O4nanoparticles for efficient magnetothermal heating. This approach enables scalable, precise fabrication of helical magnetic hydrogel microrobots. The resulting TriMag microrobots, with the synergistic effects of Fe3O4and CoFe2O4nanoparticles, demonstrate efficient magnetic actuation for controlled movement, precise imaging via MPI for imaging and tracking in biological fluid and organs, including porcine eye and mouse stomach, and magnetothermal heating for tumor ablation in a mouse model. By combining these capabilities, the fabrication and imaging approach provides a robust platform for non‐invasive monitoring and manipulation of microrobots for transformative applications in medical treatment and biological research. 
    more » « less
  3. We present a combined experimental and density functional theory study that characterizes the charge and spin density in NiX2(3,5-lutidine)4(X= Cl, Br and I). In this material, magnetic exchange interactions occur via Ni2+–halide...halide–Ni2+pathways, forming one-dimensional chains. We find evidence for weak halide...halide covalency in the iodine system, which is greatly reduced whenX= Br and is absent forX= Cl; this is consistent with the reported `switching-on' of magnetic exchange in the larger-halide cases. Our results are benchmarked against density functional theory calculations on [NiHF2(pyrazine)2]SbF6, in which the primary magnetic exchange is mediated by F–H–F bridging ligands. This comparison indicates that, despite the largely depleted charge density found at the centre of halide...halide bonds, these through-space interactions can support strong magnetic exchange gated by weak covalency and enhanced by significant electron density overlapping that of the transition metal centres. 
    more » « less
  4. Abstract Electron–phonon interactions play an essential role in charge transport and transfer processes in semiconductors. For most structures, tailoring electron–phonon interactions for specific functionality remains elusive. Here, it is shown that, in hybrid perovskites, coherent phonon modes can be used to manipulate charge transfer. In the 2D double perovskite, (AE2T)2AgBiI8(AE2T: 5,5“‐diylbis(amino‐ethyl)‐(2,2”‐(2)thiophene)), the valence band maximum derived from the [Ag0.5Bi0.5I4]2–framework lies in close proximity to the AE2T‐derived HOMO level, thereby forming a type‐II heterostructure. During transient absorption spectroscopy, pulsed excitation creates sustained coherent phonon modes, which periodically modulate the associated electronic levels. Thus, the energy offset at the organic–inorganic interface also oscillates periodically, providing a unique opportunity for modulation of interfacial charge transfer. Density‐functional theory corroborates the mechanism and identifies specific phonon modes as likely drivers of the coherent charge transfer. These observations are a striking example of how electron–phonon interactions can be used to manipulate fundamentally important charge and energy transfer processes in hybrid perovskites. 
    more » « less
  5. Abstract The investigation of twisted stacked few‐layer MoS2has revealed novel electronic, optical, and vibrational properties over an extended period. For the successful integration of twisted stacked few‐layer MoS2into a wide range of applications, it is crucial to employ a noninvasive, versatile technique for characterizing the layered architecture of these complex structures. In this work, we introduce a machine learning‐assisted low‐frequency Raman spectroscopy method to characterize the twist angle of few‐layer stacked MoS2samples. A feedforward neural network (FNN) is utilized to analyze the low‐frequency breathing mode as a function of the twist angle. Moreover, using finite difference method (FDM) and density functional theory (DFT) calculations, we show that the low‐frequency Raman spectra of MoS2are mainly influenced by the effect of the nearest and second nearest layers. A new improved linear chain model (TA‐LCM) with taking the twist angle into the consideration is developed to understand the interlayer breathing modes of stacked few‐layer MoS2. This approach can be extended to other 2D materials systems and provides an intelligent way to investigate naturally stacked and twisted interlayer interactions. 
    more » « less