Abstract Frequent deep convective thunderstorms and mesoscale convective systems make the Córdoba region, near the Sierras de Córdoba mountain range, one of the most active areas on Earth for hail activity. Analysis of hail observations from trained observers and social media reports cross-referenced with operational radar observations identified the convective characteristics of hail-producing convective systems in central Argentina over a 6-month period divided into early (October–December 2018) and late seasons (January–March 2019). Reflectivity and dual-polarization characteristics from the Córdoba operational radar [Radar Meteorológico Argentina (RMA1)] were used to identify the convective modes of convective cells at time of positive hail indicators. Analysis of ERA5 upper-air and surface data examined convective environments of hail events and identified representative dynamic and thermodynamic environments. A majority of early season hail-producing cells were classified as discrete convection, while discrete and multicell occurrence evened out in the late season. Most hail-producing cells initiated directly adjacent to the Sierras in the late season, while cell initiation and hail production is further spread out in the early season. Dividing convective events into dynamic/thermodynamic regimes based on values of 1000 J kg−1of CAPE and vertical wind shear of 20 m s−1results in most early season events reflecting shear-dominant characteristics (low CAPE, high shear) and most late-season events exhibiting CAPE-dominant characteristics (high CAPE, low shear). Strength and placement of low-level temperature and moisture anomalies/advection and upper-level jets largely defined the differences in the dominant regimes. Significance StatementThis study used regional radar data alongside hail reports from trained observers and social media to better understand the types and timing of storms identified as producing hail, given the lower resolution of satellite studies. Dividing the hail season (October–December; January–March) showed that within hail season, early season storms tended to be singular storms that formed across the region in environments with strong vertical winds and weak instability. Late-season storms were a mix of singular storms and multicellular storm systems focused on the mountains in weak vertical winds and strong instability. These results show differences from satellite studies and identify key representative hail-producing radar features and environmental regimes for this region, which could guide hail risk analysis within the severe-weather season.
more »
« less
Severe Convective Storms in Limited Instability Organized by Pattern and Distribution
Abstract Severe convection occurring in high-shear, low-CAPE (HSLC) environments is a common cool-season threat in the southeastern United States. Previous studies of HSLC convection document the increased operational challenges that these environments present compared to their high-CAPE counterparts, corresponding to higher false-alarm ratios and lower probability of detection for severe watches and warnings. These environments can exhibit rapid destabilization in the hours prior to convection, sometimes associated with the release of potential instability. Here, we use self-organizing maps (SOMs) to objectively identify environmental patterns accompanying HSLC cool-season severe events and associate them with variations in severe weather frequency and distribution. Large-scale patterns exhibit modest variation within the HSLC subclass, featuring strong surface cyclones accompanied by vigorous upper-tropospheric troughs and northward-extending regions of instability, consistent with prior studies. In most patterns, severe weather occurs immediately ahead of a cold front. Other convective ingredients, such as lower-tropospheric vertical wind shear, near-surface equivalent potential temperature (θe) advection, and the release of potential instability, varied more significantly across patterns. No single variable used to train SOMs consistently demonstrated differences in the distribution of severe weather occurrence across patterns. Comparison of SOMs based on upper and lower quartiles of severe occurrence demonstrated that the release of potential instability was most consistently associated with higher-impact events in comparison to other convective ingredients. Overall, we find that previously developed HSLC composite parameters reasonably identify high-impact HSLC events. Significance StatementEven when atmospheric instability is not optimal for severe convective storms, in some situations they can still occur, presenting increased challenges to forecasters. These marginal environments may occur at night or during the cool season, when people are less attuned to severe weather threats. Here, we use a sorting algorithm to classify different weather patterns accompanying such storms, and we distinguish which specific patterns and weather system features are most strongly associated with severe storms. Our goals are to increase situational awareness for forecasters and to improve understanding of the processes leading to severe convection in marginal environments.
more »
« less
- Award ID(s):
- 2020588
- PAR ID:
- 10532039
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Weather and Forecasting
- Volume:
- 39
- Issue:
- 1
- ISSN:
- 0882-8156
- Page Range / eLocation ID:
- 217 to 240
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We analyze the evolution of convective available potential energy (CAPE) and convective inhibition (CIN) in the days leading up to episodes of high CAPE in North America. The widely accepted theory for CAPE buildup, known as the advection hypothesis, states that high moist static energy (MSE) parcels of air moving north from the Gulf of Mexico become trapped under warm but dry parcels moving east from over elevated dry terrain. If and when the resulting CIN erodes, severe convection can occur due to the large energy difference between the boundary layer parcels and cool air aloft. However, our results, obtained via backward Lagrangian tracking of parcels at locations of peak CAPE, show that large values of CAPE are generated mainly via boundary layer moistening in the days leading up to the time of peak CAPE, and that a large portion of this moisture buildup happens on the day of peak CAPE. On the other hand, the free-tropospheric temperature above these tracked parcels rarely changes significantly over the days leading up to such occurrences. In addition, the CIN that allows for this buildup of CAPE arises mostly from unusually strong boundary layer cooling the night before peak CAPE, and has a contribution from differential advection of unusually warm air above the boundary layer to form a capping inversion. These results have important implications for the climatology of severe convective events, as it emphasizes the role of surface properties and their gradients in the frequency and intensity of high CAPE occurrences. Significance Statement Severe convective events, such as thunderstorms, tornadoes, and hail storms, are among the most deadly and destructive weather systems. Although forecasters are quite good at predicting the probability of these events a few days in advance, there is currently no reliable seasonal prediction method of severe convection. We show that the buildup of energy for severe convection relies on both strong surface evaporation during the day of peak energy and anomalous cooling the night before. This progress represents a step toward understanding what controls the frequency of severe convective events on seasonal and longer time scales, including the effect of greenhouse gas–induced climate change.more » « less
-
Environments characterized by large values of vertical wind shear and modest convective available potential energy (CAPE) are colloquially referred to as high-shear, low-CAPE (HSLC) environments. Convection within these environments represents a considerable operational forecasting challenge. Generally, it has been determined that large low-level wind shear and steep low-level lapse rates—along with synoptic-scale forcing for ascent—are common ingredients supporting severe HSLC convection. This work studies the specific processes that lead to the development of strong surface vortices in HSLC convection, particularly associated with supercells embedded within a quasi-linear convective system (QLCS), and how these processes are affected by varying low-level shear vector magnitudes and lapse rates. Analysis of a control simulation, conducted with a base state similar to a typical HSLC severe environment, reveals that the key factors in the development of a strong surface vortex in HSLC embedded supercells are (i) a strong low- to midlevel mesocyclone, and (ii) a subsequent strong low-level updraft that results from the intense, upward-pointing dynamic perturbation pressure gradient acceleration. Through a matrix of high-resolution, idealized simulations, it is determined that sufficient low-level shear vector magnitudes are necessary for the development of low- to midlevel vertical vorticity [factor (i)], while steeper low-level lapse rates provide stronger initial low-level updrafts [factor (ii)]. This work shows why increased low-level lapse rates and low-level shear vector magnitudes are important to HSLC convection on the storm scale, while also revealing similarities between surface vortexgenesis in HSLC embedded supercells and higher-CAPE supercells.more » « less
-
Abstract The first 2 weeks of December 2021 were exceptionally active for severe convective storms across the central and eastern United States. While previous work has indicated that this was related to the existence of a negative phase of the Pacific–North American pattern, we demonstrate that such a pattern was configured via dynamical linkages between multiple extratropical cyclogenesis events in the western North Pacific, the recurvature of Typhoon Nyatoh, and the subsequent phase evolution of the North Pacific jet. These processes were found to aid in the excitation of Rossby wave packets and the amplification of upper-level flow downstream over the Pacific, ultimately configuring synoptic-scale weather regimes supportive of anomalous high-frequency and high-intensity severe convective weather in the contiguous United States. In addition, abnormally warm Gulf of America/Gulf of Mexico sea surface temperatures, aided by a period of antecedent synoptic-scale subsidence, played a critical role in enhancing convective instability in the surface warm sector. This work underscores the importance of cataloging these events for purposes of examining (and potentially enhancing) predictability. Significance StatementThe first half of December 2021 recorded one of the most active cool-season severe weather periods in the United States, resulting in two billion-dollar convective outbreaks on 10 and 15 December. This study links these extreme events to upstream dynamical processes over the North Pacific, including extratropical cyclogenesis, the recurvature of Typhoon Nyatoh, and the retraction of the North Pacific jet. These processes amplified downstream flow and configured synoptic environments favorable for severe weather across the United States. Additionally, anomalously warm Gulf of America/Gulf of Mexico sea surface temperatures enhanced convective instability. By identifying these key precursors, this work highlights the potential for improved anticipation of extended-range severe weather likelihood—particularly during the cool season—when such events remain rare but highly impactful.more » « less
-
null (Ed.)Abstract The response of severe local storms to environmental evolution across the early evening transition (EET) remains a forecasting challenge, particularly within the context of the Southeast US storm climatology, which includes the increased presence of low-CAPE environments and tornadic non-supercell modes. To disentangle these complex environmental interactions, Southeast severe convective reports spanning 2003-2018 are temporally binned relative to local sunset. Sounding-derived data corresponding to each report are used to characterize how the near-storm environment evolves across the EET, and whether these changes influence the mode, frequency, and tornadic likelihood of their associated storms. High-shear, high-CAPE (HSHC) environments are contrasted with high-shear, low-CAPE (HSLC) environments to highlight physical processes governing storm maintenance and tornadogenesis in the absence of large instability. Lastly, statistical analysis is performed to determine which aspects of the near-storm environment most effectively discriminate between tornadic (or significantly tornadic) and nontornadic storms towards constructing new sounding-derived forecast guidance parameters for multiple modal and environmental combinations. Results indicate that HSLC environments evolve differently than HSHC environments, particularly for non-supercell (e.g., quasi-linear convective system) modes. These low-CAPE environments sustain higher values of low-level shear and storm-relative helicity (SRH) and destabilize post-sunset – potentially compensating for minimal buoyancy. Furthermore, the existence of HSLC storm environments pre-sunset increases the likelihood of non-supercellular tornadoes post-sunset. Existing forecast guidance metrics such as the significant tornado parameter (STP) remain the most skillful predictors of HSHC tornadoes. However, HSLC tornado prediction can be improved by considering variables like precipitable water, downdraft CAPE, and effective inflow base.more » « less
An official website of the United States government

