A long-standing fundamental open problem in mathematical fluid dynamics and nonlinear partial differential equations is to determine whether solutions of the 3D incompressible Euler equations can develop a finite-time singularity from smooth, finite-energy initial data. Leonhard Euler introduced these equations in 1757 [L. Euler,Mémoires de l’Académie des Sci. de Berlin11, 274–315 (1757).], and they are closely linked to the Navier–Stokes equations and turbulence. While the general singularity formation problem remains unresolved, we review a recent computer-assisted proof of finite-time, nearly self-similar blowup for the 2D Boussinesq and 3D axisymmetric Euler equations in a smooth bounded domain with smooth initial data. The proof introduces a framework for (nearly) self-similar blowup, demonstrating the nonlinear stability of an approximate self-similar profile constructed numerically via the dynamical rescaling formulation.
more »
« less
Vortex Filament Solutions of the Navier‐Stokes Equations
Abstract We consider solutions of the Navier‐Stokes equations in 3d with vortex filament initial data of arbitrary circulation, that is, initial vorticity given by a divergence‐free vector‐valued measure of arbitrary mass supported on a smooth curve. First, we prove global well‐posedness for perturbations of the Oseen vortex column in scaling‐critical spaces. Second, we prove local well‐posedness (in a sense to be made precise) when the filament is a smooth, closed, non‐self‐intersecting curve. Besides their physical interest, these results are the first to give well‐posedness in a neighborhood of large self‐similar solutions of 3d Navier‐Stokes, as well as solutions that are locally approximately self‐similar. © 2023 Wiley Periodicals LLC.
more »
« less
- Award ID(s):
- 2348453
- PAR ID:
- 10532054
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Communications on Pure and Applied Mathematics
- Volume:
- 76
- Issue:
- 4
- ISSN:
- 0010-3640
- Page Range / eLocation ID:
- 685 to 787
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We study the singularity formation of a quasi-exact 1D model proposed by Hou and Li (2008Commun. Pure Appl. Math.61661–97). This model is based on an approximation of the axisymmetric Navier–Stokes equations in therdirection. The solution of the 1D model can be used to construct an exact solution of the original 3D Euler and Navier–Stokes equations if the initial angular velocity, angular vorticity, and angular stream function are linear inr. This model shares many intrinsic properties similar to those of the 3D Euler and Navier–Stokes equations. It captures the competition between advection and vortex stretching as in the 1D De Gregorio (De Gregorio 1990J. Stat. Phys.591251–63; De Gregorio 1996Math. Methods Appl. Sci.191233–55) model. We show that the inviscid model with weakened advection and smooth initial data or the original 1D model with Hölder continuous data develops a self-similar blowup. We also show that the viscous model with weakened advection and smooth initial data develops a finite time blowup. To obtain sharp estimates for the nonlocal terms, we perform an exact computation for the low-frequency Fourier modes and extract damping in leading order estimates for the high-frequency modes using singularly weighted norms in the energy estimates. The analysis for the viscous case is more subtle since the viscous terms produce some instability if we just use singular weights. We establish the blowup analysis for the viscous model by carefully designing an energy norm that combines a singularly weighted energy norm and a sum of high-order Sobolev norms.more » « less
-
The aim of this note is to present the recent results by Buckmaster, Cao-Labora, and Gómez-Serrano [Smooth imploding solutions for 3D compressible fluids, Arxiv preprint arXiv:2208.09445, 2022] concerning the existence of “imploding singularities” for the 3D isentropic compressible Euler and Navier-Stokes equations. Our work builds upon the pioneering work of Merle, Raphaël, Rodnianski and Szeftel [Invent. Math. 227 (2022), pp. 247–413; Ann. of Math. (2) 196 (2022), pp. 567–778; Ann. of Math. (2) 196 (2022), pp. 779–889] and proves the existence of self-similar profiles for all adiabatic exponents γ > 1 \gamma >1 in the case of Euler; as well as proving asymptotic self-similar blow-up for γ = 7 5 \gamma =\frac 75 in the case of Navier-Stokes. Importantly, for the Navier-Stokes equation, the solution is constructed to have density bounded away from zero and constant at infinity, the first example of blow-up in such a setting. For simplicity, we will focus our exposition on the compressible Euler equations.more » « less
-
For the incompressible Navier-Stokes equations in R3 with low viscosity ν > 0, we consider the Cauchy problem with initial vorticity ω0 that represents an infinitely thin vortex filament of arbitrary given strength \Gamma supported on a circle. The vorticity field ω(x, t) of the solution is smooth at any positive time and corresponds to a vortex ring of thickness√νt that is translated along its symmetry axis due to self-induction, an effect anticipated by Helmholtz in 1858 and quantified by Kelvin in 1867. For small viscosities, we show that ω(x, t) is well-approximated on a large time interval by ω_lin (x − a(t), t), where ω_lin(·, t) = exp(νt\Delta)ω0 is the solution of the heat equation with initial data ω0, and ˙a(t) is the instantaneous velocity given by Kelvin’s formula. This gives a rigorous justification of the binormal motion for circular vortex filaments in weakly viscous fluids. The proof relies on the construction of a precise approximate solution, using a perturbative expansion in self-similar variables. To verify the stability of this approximation, one needs to rule out potential instabilities coming from very large advection terms in the linearized operator. This is done by adapting V. I. Arnold’s geometric stability methods developed in the inviscid case ν = 0 to the slightly viscous situation. It turns out that although the geometric structures behind Arnold’s approach are no longer preserved by the equation for ν >0, the relevant quadratic forms behave well on larger subspaces than those originally used in Arnold’s theory and interact favorably with the viscous terms.more » « less
-
The velocity–vorticity formulation of the 3D Navier–Stokes equations was recently found to give excellent numerical results for flows with strong rotation. In this work, we propose a new regularization of the 3D Navier–Stokes equations, which we call the 3D velocity–vorticity-Voigt (VVV) model, with a Voigt regularization term added to momentum equation in velocity–vorticity form, but with no regularizing term in the vorticity equation. We prove global well-posedness and regularity of this model under periodic boundary conditions. We prove convergence of the model's velocity and vorticity to their counterparts in the 3D Navier–Stokes equations as the Voigt modeling parameter tends to zero. We prove that the curl of the model's velocity converges to the model vorticity (which is solved for directly), as the Voigt modeling parameter tends to zero. Finally, we provide a criterion for finite-time blow-up of the 3D Navier–Stokes equations based on this inviscid regularization.more » « less
An official website of the United States government

