skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Symmetric Stair Preconditioning of Linear Systems for Parallel Trajectory Optimization
There has been a growing interest in parallel strategies for solving trajectory optimization problems. One key step in many algorithmic approaches to trajectory optimization is the solution of moderately-large and sparse linear systems. Iterative methods are particularly well-suited for parallel solves of such systems. However, fast and stable convergence of iterative methods is reliant on the application of a high-quality preconditioner that reduces the spread and increase the clustering of the eigenvalues of the target matrix. To improve the performance of these approaches, we present a new parallel-friendly symmetric stair preconditioner. We prove that our preconditioner has advantageous theoretical properties when used in conjunction with iterative methods for trajectory optimization such as a more clustered eigenvalue spectrum. Numerical experiments with typical trajectory optimization problems reveal that as compared to the best alternative parallel preconditioner from the literature, our symmetric stair preconditioner provides up to a 34% reduction in condition number and up to a 25% reduction in the number of resulting linear system solver iterations.  more » « less
Award ID(s):
2246022
PAR ID:
10532065
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-8457-4
Page Range / eLocation ID:
9779 to 9786
Format(s):
Medium: X
Location:
Yokohama, Japan
Sponsoring Org:
National Science Foundation
More Like this
  1. Kernel methods are a popular class of nonlinear predictive models in machine learning. Scalable algorithms for learning kernel models need to be iterative in nature, but convergence can be slow due to poor conditioning. Spectral preconditioning is an important tool to speed-up the convergence of such iterative algorithms for training kernel models. However computing and storing a spectral preconditioner can be expensive which can lead to large computational and storage overheads, precluding the application of kernel methods to problems with large datasets. A Nystrom approximation of the spectral preconditioner is often cheaper to compute and store, and has demonstrated success in practical applications. In this paper we analyze the trade-offs of using such an approximated preconditioner. Specifically, we show that a sample of logarithmic size (as a function of the size of the dataset) enables the Nyström-based approximated preconditioner to accelerate gradient descent nearly as well as the exact preconditioner, while also reducing the computational and storage overheads. 
    more » « less
  2. Nonlinear Model Predictive Control (NMPC) is a state-of-the-art approach for locomotion and manipulation which leverages trajectory optimization at each control step. While the performance of this approach is computationally bounded, implementations of direct trajectory optimization that use iterative methods to solve the underlying moderately-large and sparse linear systems, are a natural fit for parallel hardware acceleration. In this work, we introduce MPCGPU, a GPU-accelerated, real-time NMPC solver that leverages an accelerated preconditioned conjugate gradient (PCG) linear system solver at its core. We show that MPCGPU increases the scalability and real-time performance of NMPC, solving larger problems, at faster rates. In particular, for tracking tasks using the Kuka IIWA manipulator, MPCGPU is able to scale to kilohertz control rates with trajectories as long as 512 knot points. This is driven by a custom PCG solver which outperforms state-of-the-art, CPU-based, linear system solvers by at least 10x for a majority of solves and 3.6x on average. 
    more » « less
  3. We present a new class of preconditioned iterative methods for solving linear systems of the form Ax = b. Our methods are based on constructing a low-rank Nyström approximation to A using sparse random matrix sketching. This approximation is used to construct a preconditioner, which itself is inverted quickly using additional levels of random sketching and preconditioning. We prove that the convergence of our methods depends on a natural average condition number of A, which improves as the rank of the Nyström approximation increases. Concretely, this allows us to obtain faster runtimes for a number of fundamental linear algebraic problems: 1. We show how to solve any n × n linear system that is well-conditioned except for k outlying large singular values in Õ (n2.065 + kω) time, improving on a recent result of [Derezmski, Yang, STOC 2024] for all k ≳ n0.78. 2. We give the first Õ (n2 + dλω) time algorithm for solving a regularized linear system (A+λΙ)x = b, where A is positive semidefinite with effective dimension dλ = tr(A(A + λΙ)-1). This problem arises in applications like Gaussian process regression. 3. We give faster algorithms for approximating Schatten p-norms and other matrix norms. For example, for the Schatten 1-norm (nuclear norm), we give an algorithm that runs in Õ (n2.11) time, improving on an Õ (n2.18) method of [Musco et al., ITCS 2018]. All results are proven in the real RAM model of computation. Interestingly, previous state-of-the-art algorithms for most of the problems above relied on stochastic iterative methods, like stochastic coordinate and gradient descent. Our work takes a completely different approach, instead leveraging tools from matrix sketching. 
    more » « less
  4. Summary We construct an algebraic multigrid (AMG) based preconditioner for the reduced Hessian of a linear‐quadratic optimization problem constrained by an elliptic partial differential equation. While the preconditioner generalizes a geometric multigrid preconditioner introduced in earlier works, its construction relies entirely on a standard AMG infrastructure built for solving the forward elliptic equation, thus allowing for it to be implemented using a variety of AMG methods and standard packages. Our analysis establishes a clear connection between the quality of the preconditioner and the AMG method used. The proposed strategy has a broad and robust applicability to problems with unstructured grids, complex geometry, and varying coefficients. The method is implemented using the Hypre package and several numerical examples are presented. 
    more » « less
  5. The paper compares standard iterative methods for solving the generalized Stokes problem arising from the time and space approximation of the time-dependent incompressible Navier-Stokes equations. Various preconditioning techniques are considered: (1) pressure Schur complement; (2) fully coupled system using an exact factorization as a basis for the preconditioner; (3) fully coupled system using norm equivalence considerations as a basis for the preconditioner; (4) in all the cases we also investigate the benefits of the augmented Lagrangian formulation. Our objective is to see whether one of these methods can compete with traditional pressure-correction and velocity-correction methods in terms of throughput (the throughput is the ratio of the number of degrees of freedom of the problem divided by the number of cores and the wall-clock time in second). Numerical tests on fine unstructured meshes (68 millions degrees of freedoms) demonstrate GMRES/CG convergence rates that are independent of the mesh size and improve with the Reynolds number for most methods. Three conclusions are drawn: (1) The throughputs of all the methods tested in the paper are similar up to mesh-independent multiplicative constants (see Fig. 6). (2) Although very good parallel scalability is observed for the augmented Lagrangian version of the generalized Stokes problem, the best throughputs are achieved without the augmented Lagrangian term. (3) The throughput of all the methods tested in the paper is on average 5 to 25 times slower than that of traditional pressure-correction and velocity-correction methods (on average 5 for the best one). Hence, although all these methods are very efficient for solving steady state problems, pressure- 
    more » « less