skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Great Rift Valley is a more pronounced biogeographic barrier than the Blue Nile Valley for six Ethiopian Highland passerines in the eastern Afromontane biodiversity hotspot
ABSTRACT The Ethiopian Highlands are divided by lowland biogeographic barriers, including the Blue Nile Valley (BNV) and Great Rift Valley (GRV). We show that the GRV is a more pronounced phylogeographic break than the BNV for 6 focal passerines. Previous research suggests that the BNV greatly shaped phylogeographic patterns in relatively sedentary montane taxa such as frogs and rodents, whereas the GRV shaped phylogeographic patterns in volant taxa such as birds. However, no previous research simultaneously compares the impact of each valley on phylogeographic patterns in birds, and as these barriers vary in geographic extent and topography, the relative extent of their effects on gene flow is unclear. Using whole-genome resequencing, we quantified genetic variation in 6 montane forest passerines in the Ethiopian Highlands and found that their phylogeographic patterns varied, with general trends distinct from those of taxa that were previously studied across the same barriers. Genetic variation was assessed by estimating genome-wide genetic diversity (HO), demographic history, phylogeographic structure, and phylogeographic concordance among taxa. Population pairs flanking the GRV showed higher FST and more distinct population clusters in principal component analysis than those separated by the BNV. HO was broadly consistent across populations, excluding noticeable reductions in 2 populations (1 population each in 2 separate species). The overall phylogenetic signature and concordance across study taxa supported populations separated by the BNV as sister and populations southeast of the GRV as most distinct.  more » « less
Award ID(s):
1953688
PAR ID:
10532137
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Ornithology
ISSN:
0004-8038
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Taxon‐specific characteristics and extrinsic climatic and geological forces may both shape population differentiation and speciation. In geographically and taxonomically focused investigations, differentiation may occur synchronously as species respond to the same external conditions. Conversely, when evolution is investigated in taxa with largely varying traits, population differentiation and speciation is complex and shaped by interactions of Earth's template and species‐specific traits. As such, it is important to characterize evolutionary histories broadly across the tree of life, especially in geographic regions that are exceptionally diverse and under pressures from human activities such as in biodiversity hotspots. Here, using whole‐genome sequencing data, we characterize genomic variation in populations of six Ethiopian Highlands forest bird species separated by a lowland biogeographic barrier, the Great Rift Valley (GRV). In all six species, populations on either side of the GRV exhibited significant but varying levels of genetic differentiation. Species’ dispersal ability was negatively correlated with levels of population differentiation. Isolation with migration models indicated varied patterns of population differentiation and connectivity among populations of the focal species. We found that demographic histories—estimated for each individual—varied by both species and population but were consistent between individuals of the same species and sampling region. We found that genomic diversity varied by half an order of magnitude across species, and that this variation could largely be explained by the harmonic mean of effective population size over the past 200,000 years. Overall, we found that even in highly dispersive species like birds, the GRV acts as a substantial biogeographic barrier. 
    more » « less
  2. Powell, Roger (Ed.)
    Abstract Quaternary climatic oscillations affected species distributions worldwide, creating cycles of connectivity and isolation that impacted population demography and promoted lineage divergence. These effects have been well studied in temperate regions. Taxa inhabiting mesic montane habitats in tropical ecosystems show high levels of endemism and diversification in the distinct mountain ranges they inhabit; such a pattern has commonly been ascribed to past climatic oscillations, but few phylogeographic studies have tested this hypothesis. Here, we combine ecological niche models of species distributions with molecular data to study phylogeographic patterns in two rodents endemic to the highlands of Costa Rica and western Panama (Reithrodontomys creper and Nephelomys devius). In so doing, we apply a novel approach that incorporates a basic ecological principle: the expected positive relationship between environmental suitability and population abundance. Specifically, we use niche models to predict potential patterns of population connectivity and stability of different suitability levels during climatic extremes of the last glacial–interglacial cycle; we then test these predictions with population genetic analyses of a mitochondrial and a nuclear marker. The detailed predictions arising from the different levels of suitability were moderately to highly congruent with the molecular data depending on the species. Overall, results suggest that in these tropical montane ecosystems, cycles of population connectivity and isolation followed a pattern opposite to that typically described for temperate or lowland tropical ecosystems: namely, higher connectivity during the colder glacials, with isolation in montane refugia during the interglacials, including today. Nevertheless, the individualistic patterns for each species indicate a potentially wide gamut of phylogeographic histories reflecting particularities of their niches. Taken together, this study illustrates how phylogeographic inferences may benefit from niche model outputs that provide more detailed predictions of connectivity and finer characterizations of potential refugia through time. 
    more » « less
  3. Abstract In high-latitude species with high dispersal ability, such as long-distance migratory birds, populations are often assumed to exhibit little genetic structure due to high gene flow or recent postglacial expansion. We sequenced over 120 low-coverage whole genomes from across the breeding range of a long-distance migratory bird, the Veery (Catharus fuscescens), revealing strong evidence for isolation by distance. Additionally, we found distinct genetic structure between boreal, western montane U.S., and southern Appalachian sampling regions. We suggest that population genetic structure in this highly migratory species is detectable with the high resolution afforded by whole-genomic data because, similar to many migratory birds, the Veery exhibits high breeding-site fidelity, which likely limits gene flow. Resolution of isolation by distance across the breeding range was sufficient to assign likely breeding origins of individuals sampled in this species’ poorly understood South American nonbreeding range, demonstrating the potential to assess migratory connectivity in this species using genomic data. As the Veery’s breeding range extends across both historically glaciated and unglaciated regions in North America, we also evaluated whether contemporary patterns of structure and genetic diversity are consistent with historical population isolation in glacial refugia. We found that patterns of genetic diversity did not support southern montane regions (southern Appalachians or western U.S. mountains) as glacial refugia. Overall, our findings suggest that isolation by distance yields subtle associations between genetic structure and geography across the breeding range of this highly vagile species even in the absence of obvious historical vicariance or contemporary barriers to dispersal. 
    more » « less
  4. Abstract The integration of ecological niche modelling into phylogeographic analyses has allowed for the identification and testing of potential refugia under a hypothesis‐based framework, where the expected patterns of higher genetic diversity in refugial populations and evidence of range expansion of nonrefugial populations are corroborated with empirical data. In this study, we focus on a montane‐restricted cryophilic harvestman,Sclerobunus robustus, distributed throughout the heterogeneous Southern Rocky Mountains and Intermontane Plateau of southwestern North America. We identified hypothetical refugia using ecological niche models (ENMs) across three time periods, corroborated these refugia with population genetic methods using double‐digest RAD‐seq data and conducted population‐level phylogenetic and divergence dating analyses. ENMs identify two large temporally persistent regions in the mid‐latitude highlands. Genetic patterns support these two hypothesized refugia with higher genetic diversity within refugial populations and evidence for range expansion in populations found outside hypothesized refugia. Phylogenetic analyses identify five to six genetically divergent, geographically cohesive clades ofS. robustus. Divergence dating analyses suggest that these separate refugia date to the Pliocene and that divergence between clades pre‐dates the late Pleistocene glacial cycles, while diversification within clades was likely driven by these cycles. Population genetic analyses reveal effects of both isolation by distance (IBD) and isolation by environment (IBE), with IBD more important in the continuous mountainous portion of the distribution, while IBE was stronger in the populations inhabiting the isolated sky islands of the south. Using model‐based coalescent approaches, we find support for postdivergence migration between clades from separate refugia. 
    more » « less
  5. Rates of species formation vary widely across the tree of life and contribute to massive disparities in species richness among clades. This variation can emerge from differences in metapopulation-level processes that affect the rates at which lineages diverge, persist, and evolve reproductive barriers and ecological differentiation. For example, populations that evolve reproductive barriers quickly should form new species at faster rates than populations that acquire reproductive barriers more slowly. This expectation implicitly links microevolutionary processes (the evolution of populations) and macroevolutionary patterns (the profound disparity in speciation rate across taxa). Here, leveraging extensive field sampling from the Neotropical Cerrado biome in a biogeographically controlled natural experiment, we test the role of an important microevolutionary process—the propensity for population isolation—as a control on speciation rate in lizards and snakes. By quantifying population genomic structure across a set of codistributed taxa with extensive and phylogenetically independent variation in speciation rate, we show that broad-scale patterns of species formation are decoupled from demographic and genetic processes that promote the formation of population isolates. Population isolation is likely a critical stage of speciation for many taxa, but our results suggest that interspecific variability in the propensity for isolation has little influence on speciation rates. These results suggest that other stages of speciation—including the rate at which reproductive barriers evolve and the extent to which newly formed populations persist—are likely to play a larger role than population isolation in controlling speciation rate variation in squamates. 
    more » « less