skip to main content


This content will become publicly available on January 1, 2025

Title: Oracle Efficient Algorithms for Groupwise Regret
We study the problem of online prediction, in which at each time step t, an individual xt arrives, whose label we must predict. Each individual is associated with various groups, defined based on their features such as age, sex, race etc., which may intersect. Our goal is to make predictions that have regret guarantees not just overall but also simultaneously on each sub-sequence comprised of the members of any single group. Previous work such as [Blum & Lykouris] and [Lee et al] provide attractive regret guarantees for these problems; however, these are computationally intractable on large model classes. We show that a simple modification of the sleeping experts technique of [Blum & Lykouris] yields an efficient reduction to the well-understood problem of obtaining diminishing external regret absent group considerations. Our approach gives similar regret guarantees compared to [Blum & Lykouris]; however, we run in time linear in the number of groups, and are oracle-efficient in the hypothesis class. This in particular implies that our algorithm is efficient whenever the number of groups is polynomially bounded and the external-regret problem can be solved efficiently, an improvement on [Blum & Lykouris]'s stronger condition that the model class must be small. Our approach can handle online linear regression and online combinatorial optimization problems like online shortest paths. Beyond providing theoretical regret bounds, we evaluate this algorithm with an extensive set of experiments on synthetic data and on two real data sets -- Medical costs and the Adult income dataset, both instantiated with intersecting groups defined in terms of race, sex, and other demographic characteristics. We find that uniformly across groups, our algorithm gives substantial error improvements compared to running a standard online linear regression algorithm with no groupwise regret guarantees.  more » « less
Award ID(s):
2147212 1763307
NSF-PAR ID:
10532205
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ICLR 2024
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the problem of safe online convex optimization, where the action at each time step must satisfy a set of linear safety constraints. The goal is to select a sequence of ac- tions to minimize the regret without violating the safety constraints at any time step (with high probability). The parameters that specify the linear safety constraints are unknown to the algorithm. The algorithm has access to only the noisy observations of constraints for the chosen actions. We pro- pose an algorithm, called the Safe Online Projected Gradient Descent(SO-PGD) algorithm to address this problem. We show that, under the assumption of the availability of a safe baseline action, the SO-PGD algorithm achieves a regret O(T^2/3). While there are many algorithms for online convex optimization (OCO) problems with safety constraints avail- able in the literature, they allow constraint violations during learning/optimization, and the focus has been on characterizing the cumulative constraint violations. To the best of our knowledge, ours is the first work that provides an algorithm with provable guarantees on the regret, without violating the linear safety constraints (with high probability) at any time step. 
    more » « less
  2. null (Ed.)
    We develop a framework for designing simple and efficient policies for a family of online allocation and pricing problems that includes online packing, budget-constrained probing, dynamic pricing, and online contextual bandits with knapsacks. In each case, we evaluate the performance of our policies in terms of their regret (i.e., additive gap) relative to an offline controller that is endowed with more information than the online controller. Our framework is based on Bellman inequalities, which decompose the loss of an algorithm into two distinct sources of error: (1) arising from computational tractability issues, and (2) arising from estimation/prediction of random trajectories. Balancing these errors guides the choice of benchmarks, and leads to policies that are both tractable and have strong performance guarantees. In particular, in all our examples, we demonstrate constant-regret policies that only require resolving a linear program in each period, followed by a simple greedy action-selection rule; thus, our policies are practical as well as provably near optimal. 
    more » « less
  3. Constrained submodular function maximization has been used in subset selection problems such as selection of most informative sensor locations. While these models have been quite popular, the solutions obtained via this approach are unstable to perturbations in data defining the submodular functions. Robust submodular maximization has been proposed as a richer model that aims to overcome this discrepancy as well as increase the modeling scope of submodular optimization. In this work, we consider robust submodular maximization with structured combinatorial constraints and give efficient algorithms with provable guarantees. Our approach is applicable to constraints defined by single or multiple matroids, knapsack as well as distributionally robust criteria. We consider both the offline setting where the data defining the problem is known in advance as well as the online setting where the input data is revealed over time. For the offline setting, we give a nearly optimal bi-criteria approximation algorithm that relies on new extensions of the classical greedy algorithm. For the online version of the problem, we give an algorithm that returns a bi-criteria solution with sub-linear regret. 
    more » « less
  4. In this paper, we study a class of online optimization problems with long-term budget constraints where the objective functions are not necessarily concave (nor convex), but they instead satisfy the Diminishing Returns (DR) property. In this online setting, a sequence of monotone DR-submodular objective functions and linear budget functions arrive over time and assuming a limited total budget, the goal is to take actions at each time, before observing the utility and budget function arriving at that round, to achieve sub-linear regret bound while the total budget violation is sub-linear as well. Prior work has shown that achieving sub-linear regret and total budget violation simultaneously is impossible if the utility and budget functions are chosen adversarially. Therefore, we modify the notion of regret by comparing the agent against the best fixed decision in hindsight which satisfies the budget constraint proportionally over any window of length W. We propose the Online Saddle Point Hybrid Gradient (OSPHG) algorithm to solve this class of online problems. For W = T, we recover the aforementioned impossibility result. However, if W is sublinear in T, we show that it is possible to obtain sub-linear bounds for both the regret and the total budget violation. 
    more » « less
  5. null (Ed.)
    We consider a general class of finite-horizon online decision-making problems, where in each period a controller is presented a stochastic arrival and must choose an action from a set of permissible actions, and the final objective depends only on the aggregate type-action counts. Such a framework encapsulates many online stochastic variants of common optimization problems including bin packing, generalized assignment, and network revenue management. In such settings, we study a natural model-predictive control algorithm that in each period, acts greedily based on an updated certainty-equivalent optimization problem. We introduce a simple, yet general, condition under which this algorithm obtains uniform additive loss (independent of the horizon) compared to an optimal solution with full knowledge of arrivals. Our condition is fulfilled by the above-mentioned problems, as well as more general settings involving piece-wise linear objectives and offline index policies, including an airline overbooking problem. 
    more » « less