Despite its growing importance in the energy generation and storage industry, the detection of hydrogen in trace concentrations remains challenging, as established optical absorption methods are ineffective in probing homonuclear diatomics. Besides indirect detection approaches using, e.g., chemically sensitized microdevices, Raman scattering has shown promise as an alternative direct method of unambiguous hydrogen chemical fingerprinting. We investigated the suitability of feedback-assisted multipass spontaneous Raman scattering for this task and examined the precision with which hydrogen can be sensed at concentrations below 2 parts per million. A limit of detection of 60, 30, and 20 parts per billion was obtained at a pressure of 0.2 MPa in a 10-min-long, 120-min-long, and 720-min-long measurement, respectively, with the lowest concentration probed being 75 parts per billion. Various methods of signal extraction were compared, including asymmetric multi-peak fitting, which allowed the resolution of concentration steps of 50 parts per billion, determining the ambient air hydrogen concentration with an uncertainty level of 20 parts per billion.
more »
« less
Raman scattering applied to human breath analysis
The chemical composition of exhaled human breath can be strongly correlated to medical conditions such as lung cancer or gastrointestinal diseases. To establish these correlations and, most importantly, to use them in diagnostics, chemical gas detection needs to be performed at trace concentrations, typically at parts-per-million (ppm) levels or below, for many compounds simultaneously. Traditional methods such as gas chromatography, a workhorse in scientific laboratories, is ill-suited for the fast, inexpensive point-of-care diagnostics that would be needed to build statistically-meaningful ensembles over large populations. With the increasing availability and decreasing cost of high power diode lasers and of uncooled CMOS cameras, spontaneous Raman spectroscopy (SRS), a vibrational molecular fingerprinting tool, is emerging as an economic alternative. Although gas SRS scattering cross sections are only on the order of 10$$^{-31}$$ cm$^2$/sr, considerable progress in the development of enhancement techniques has been made over the past decade. The purpose of this work is to review SRS enhancement approaches in the context of established human breath tests, and to provide a comparison with alternatives. Already, numerous trace gases such as H$$_2$$, CH$$_4$$, $$^{13}$$CO$$_2$$, and volatile organic compounds like acetone can be rapidly quantified in breath at concentrations below 1 ppm with SRS. With improvements in resolution and design of enhancement systems, SRS-based sensors could be scalably deployed in, e.g., pharmacies, and non-invasively screen for dozens of analytes at the parts-per-billion level.
more »
« less
- Award ID(s):
- 2116275
- PAR ID:
- 10532220
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- TrAC Trends in Analytical Chemistry
- Volume:
- 177
- Issue:
- C
- ISSN:
- 0165-9936
- Page Range / eLocation ID:
- 117791
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fast diagnostic results using breath analysis are an anticipated possibility for disease diagnosis or general health screenings. Tests that do not require sending specimens to medical laboratories possess capabilities to speed patient diagnosis and protect both patient and healthcare staff from unnecessary prolonged exposure. The objective of this work was to develop testing procedures on an initial healthy subject cohort in Hawaii to act as a range-finding pilot study for characterizing the baseline of exhaled breath prior to further research. Using comprehensive two-dimensional gas chromatography (GC×GC), this study analyzed exhaled breath from a healthy adult population in Hawaii to profile the range of different volatile organic compounds (VOCs) and survey Hawaii-specific differences. The most consistently reported compounds in the breath profile of individuals were acetic acid, dimethoxymethane, benzoic acid methyl ester, and n-hexane. In comparison to other breathprinting studies, the list of compounds discovered was representative of control cohorts. This must be considered when implementing proposed breath diagnostics in new locations with increased interpersonal variation due to diversity. Further studies on larger numbers of subjects over longer periods of time will provide additional foundational data on baseline breath VOC profiles of control populations for comparison to disease-positive cohorts.more » « less
-
Abstract The accurate, continuous analysis of healthcare-relevant gases such as nitrogen oxides (NO x ) in a humid environment remains elusive for low-cost, stretchable gas sensing devices. This study presents the design and demonstration of a moisture-resistant, stretchable NO x gas sensor based on laser-induced graphene (LIG). Sandwiched between a soft elastomeric substrate and a moisture-resistant semipermeable encapsulant, the LIG sensing and electrode layer is first optimized by tuning laser processing parameters such as power, image density, and defocus distance. The gas sensor, using a needlelike LIG prepared with optimal laser processing parameters, exhibits a large response of 4.18‰ ppm −1 to NO and 6.66‰ ppm −1 to NO 2 , an ultralow detection limit of 8.3 ppb to NO and 4.0 ppb to NO 2 , fast response/recovery, and excellent selectivity. The design of a stretchable serpentine structure in the LIG electrode and strain isolation from the stiff island allows the gas sensor to be stretched by 30%. Combined with a moisture-resistant property against a relative humidity of 90%, the reported gas sensor has further been demonstrated to monitor the personal local environment during different times of the day and analyze human breath samples to classify patients with respiratory diseases from healthy volunteers. Moisture-resistant, stretchable NO x gas sensors can expand the capability of wearable devices to detect biomarkers from humans and exposed environments for early disease diagnostics.more » « less
-
The requirement for C2H2concentrations below 2 parts per million (ppm) in gas streams for C2H4polymerization necessitates its semihydrogenation to C2H4. We demonstrate selective chemical looping combustion of C2H2in C2H4-rich streams by Bi2O3as an alternative catalytic pathway to reduce C2H2concentration below 2 ppm. Bi2O3combusts C2H2with a first-order rate constant that is 3000 times greater than the rate constant for C2H4combustion. In successive redox cycles, the lattice O of Bi2O3can be fully replenished without discernible changes in local Bi coordination or C2H2combustion selectivity. Heterolytic activation of C–H bonds across Bi–O sites and the higher acidity of C2H2results in lower barriers for C2H2activation than C2H4, enabling selective catalytic hydrocarbon combustion leveraging differences in molecular deprotonation energies.more » « less
-
Plasma furnace processing has the potential to transform solar cell production. If informed decisions regarding silicon ore and mineral exploration can be made such that waste streams are also of high economic value, then production is ultimately more environmentally integrated. This study presents results from a spot check of the Kinnikinic Quartzite, ~4.5 km east of Arco, Butte County, Idaho (43.639091°, −113.243295°), for ore quality. The mineralogical and geochemical characteristics are explored within the context of a planned plasma furnace project at the sampled site and are compared to previous consulting reports. X-ray diffraction analysis detected only quartz, while scanning electron microscopy identified quartz grains, secondary quartz cement, trace amounts of potassium feldspar, minor iron oxides, and secondary illite. The bulk chemical characterization of 20 samples (including repeats) reports several wt. % variation in SiO2 from 96.47 to 99.66. Other notable chemical components include Al2O3, K2O, CaO, and Rb, all consistent with the presence of potassium feldspar (and illite). Gold concentrations vary from below detection (n = 12 out of 20) to a maximum concentration of 0.086 ppm. Total sum REE concentrations vary from 13 to 143 ppm. Conservatively and optimistically, assuming ideal extraction and recovery in plasma furnace operation, a resulting waste stream would have approximately 15.2 ppm (0.488 oz./metric ton) gold and 3400 ppm REE in the average waste. Gold (and REE extraction) may, however, be complicated by the presence of Fe and Cu if cyanide approaches were implemented. Gold concentrations are significantly lower than reported in previous work, warranting further characterization of this unit locally and regionally in order to characterize ore potential. This study works to demonstrate the possibility of evaluating other potential silicon ore units, such as the St. Peter Sandstone in Illinois and Missouri, for the co-production of materials in support of an emerging green economy.more » « less
An official website of the United States government

