Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A simple method for reducing the linewidth of a diode laser while maintaining high output power is described. It is based on a dispersive prism and a thin etalon for retroreflective feedback. The etalon creates two weak external cavities that provide spectral selectivity that is periodic with a period equal to the etalon’s free spectral range. The method was applied to a multimode blue laser diode, which in the absence of feedback features a linewidth of several nanometers. The spectral properties of the laser were investigated for different etalon thicknesses and operating currents and tested in the presence of temperature fluctuations. With a SF11 equilateral uncoated prism near Brewster’s angle and a 0.3 mm-thick uncoated fused silica etalon, the linewidth was reduced 20-fold to 70 pm (3.6 cm−1) with an output power of 3 W at a current of 2.15 A. The largest diode current probed was 2.75 A, which resulted in a linewidth of 100 pm (5.1 cm−1) and an output power of 4 W. In contrast to the use of, for example, a volume Bragg grating, a high degree of flexibility is afforded as the same prism–etalon pair can be used across the visible and near infrared.more » « less
-
The chemical composition of exhaled human breath can be strongly correlated to medical conditions such as lung cancer or gastrointestinal diseases. To establish these correlations and, most importantly, to use them in diagnostics, chemical gas detection needs to be performed at trace concentrations, typically at parts-per-million (ppm) levels or below, for many compounds simultaneously. Traditional methods such as gas chromatography, a workhorse in scientific laboratories, is ill-suited for the fast, inexpensive point-of-care diagnostics that would be needed to build statistically-meaningful ensembles over large populations. With the increasing availability and decreasing cost of high power diode lasers and of uncooled CMOS cameras, spontaneous Raman spectroscopy (SRS), a vibrational molecular fingerprinting tool, is emerging as an economic alternative. Although gas SRS scattering cross sections are only on the order of 10$$^{-31}$$ cm$^2$/sr, considerable progress in the development of enhancement techniques has been made over the past decade. The purpose of this work is to review SRS enhancement approaches in the context of established human breath tests, and to provide a comparison with alternatives. Already, numerous trace gases such as H$$_2$$, CH$$_4$$, $$^{13}$$CO$$_2$$, and volatile organic compounds like acetone can be rapidly quantified in breath at concentrations below 1 ppm with SRS. With improvements in resolution and design of enhancement systems, SRS-based sensors could be scalably deployed in, e.g., pharmacies, and non-invasively screen for dozens of analytes at the parts-per-billion level.more » « less
-
Spontaneous Raman gas spectroscopy, which stands out as a versatile chemical identification tool, typically relies on frequency-doubled infrared laser sources to deliver the high power and narrow linewidth needed to achieve chemical detection at trace concentrations. The relatively low efficiency and high complexity of these lasers, however, can make them challenging to integrate into field-deployable instruments. Additionally, the frequency doubling prevents the utilization of circulating laser power for Raman enhancement. A diode-pumped Pr:YLF laser was investigated as an alternative narrow-band light source that could potentially realize a more portable Raman scattering system. When operated with an intracavity etalon, the laser realized a linewidth of 0.5 cm−1 with a green output power of 0.37 W and circulating power of 16 W when pumped with 3.1 W from a blue diode laser. Trace detection at atmospheric pressure with a high degree of spectral discrimination was demonstrated by resolving overlapping N2/CO and CO2/N2O Raman bands in air.more » « less
-
Despite its growing importance in the energy generation and storage industry, the detection of hydrogen in trace concentrations remains challenging, as established optical absorption methods are ineffective in probing homonuclear diatomics. Besides indirect detection approaches using, e.g., chemically sensitized microdevices, Raman scattering has shown promise as an alternative direct method of unambiguous hydrogen chemical fingerprinting. We investigated the suitability of feedback-assisted multipass spontaneous Raman scattering for this task and examined the precision with which hydrogen can be sensed at concentrations below 2 parts per million. A limit of detection of 60, 30, and 20 parts per billion was obtained at a pressure of 0.2 MPa in a 10-min-long, 120-min-long, and 720-min-long measurement, respectively, with the lowest concentration probed being 75 parts per billion. Various methods of signal extraction were compared, including asymmetric multi-peak fitting, which allowed the resolution of concentration steps of 50 parts per billion, determining the ambient air hydrogen concentration with an uncertainty level of 20 parts per billion.more » « less
An official website of the United States government
