Abstract MXenes, a family of 2D transition‐metal carbides and nitrides, have excellent electrical conductivity and unique optical properties. However, MXenes oxidize in ambient conditions, which is accelerated upon heating. Intercalation of water also causes hydrolysis accelerating oxidation. Developing new tools to readily characterize MXenes’ thermal stability can enable deeper insights into their structure–property relationships. Here, in situ spectroscopic ellipsometry (SE) is employed to characterize the optical properties of three types of MXenes (Ti3C2Tx, Mo2TiC2Tx, and Ti2CTx) with varied composition and atomistic structures to investigate their thermal degradation upon heating under ambient environment. It is demonstrated that changes in MXene extinction and optical conductivity in the visible and near‐IR regions correlate well with the amount of intercalated water and hydroxyl termination groups and the degree of oxidation, measured using thermogravimetric analysis. Among the three MXenes, Ti3C2Txand Ti2CTx, respectively, have the highest and lowest thermal stability, indicating the role of transition‐metal type, synthesis route, and the number of atomic layers in MXene flakes. These findings demonstrate the utility of SE as a powerful in situ technique for rapid structure–property relationship studies paving the way for the further design, fabrication, and property optimization of novel MXene materials.
more »
« less
Screening Conductive MXenes for Lithium Polysulfide Adsorption
Abstract MXenes are promising passive components that enable lithium‐sulfur batteries (LSBs) by effectively trapping lithium polysulfides (LiPSs) and facilitating surface‐mediated redox reactions. Despite numerous studies highlighting the potential of MXenes in LSBs, there are no systematic studies of MXenes’ composition influence on polysulfide adsorption, which is foundational to their applications in LSB. Here, a comprehensive investigation of LiPS adsorption on seven MXenes with varying chemistries (Ti2CTx, Ti3C2Tx, Ti3CNTx, Mo2TiC2Tx, V2CTx, Nb2CTx, and Nb4C3Tx), utilizing optical and analytical spectroscopic methods is performed. This work reports on the influence of polysulfide concentration, interaction time, and MXenes’ chemistry (transition metal layer, carbide and carbonitride inner layer, surface terminations and structure) on the amount of adsorbed LiPSs and the adsorption mechanism. These findings reveal the formation of insoluble thiosulfate and polythionate complex species on the surfaces of all tested MXenes. Furthermore, the selective adsorption of lithium and sulfur, and the extent of conversion of the adsorbed species on MXenes varied based on their chemistry. For instance, Ti2CTxexhibits a strong tendency to adsorb lithium ions, while Mo2TiC2Txis effective in trapping sulfur by forming long‐chain polythionates. The latter demonstrates a significant conversion of intermediate polysulfides into low‐order species. This study offers valuable guidance for the informed selection of MXenes in various functional components benefiting the future development of high‐performance LSBs.
more »
« less
- PAR ID:
- 10532223
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Advanced Functional Materials
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The electrochemical behavior of sulfur-based batteries is intrinsically governed by polysulfide species. Here, we compare the substitutions of selenium and tellurium into polysulfide chains and demonstrate their beneficial impact on the chemistry of lithium–sulfur batteries. While selenium-substituted polysulfides enhance cathode utilization by effectively catalyzing the sulfur/Li 2 S conversion reactions due to the preferential formation of radical intermediates, tellurium-substituted polysulfides improve lithium cycling efficiency by reducing into a passivating interfacial layer on the lithium surface with low Li + -ion diffusion barriers. This unconventional strategy based on “molecular engineering” of polysulfides and exploiting the intrinsic polysulfide shuttle effect is validated by a ten-fold improvement in the cycle life of lean-electrolyte “anode-free” pouch cells. Assembled with no free lithium metal at the anode, the anode-free configuration maximizes the energy density, mitigates the challenges of handling thin lithium foils, and eliminates self-discharge upon cell assembly. The insights generated into the differences between selenium and tellurium chemistries can be applied to benefit a broad range of metal–chalcogen batteries as well as chalcogenide solid electrolytes.more » « less
-
Abstract Surface chemistry and core composition of 2D MXenes play a major role in their interfacial properties, but the determination and quantification of their bonding environments remain challenging. X‐ray Photoelectron Spectroscopy (XPS) is a method of choice that is broadly utilized but is often hindered by large uncertainties and systematic bias due to adsorbed species such as adventitious carbon or etching residues. In this work, energy‐dependent XPS and depth profile modeling of the Ti3C2TxMXene surface are employed to differentiate the contributions from the MXene and the adsorbed species, thereby increasing the accuracy of quantification. In comparison, uncorrected lab‐based XPS suffers from a systematic overestimation of Ti vacancies by 7% and an underestimation of terminal atoms, particularly F, by as much as 15%. Interestingly, it is found that a simple inelastic mean free path correction is sufficient to address the issue and reveals extremely low defects in Ti3C2TxMXene synthesized using the HF/HCl etching route. Soft X‐ray Absorption Spectroscopy (XAS), supported by Density Functional Theory (DFT) calculations, also demonstrates a high chemical sensitivity of the surface terminations. This work provides novel insights into XPS quantification and the use of XAS for probing the carbide core and surface chemistry of Ti3C2TxMXenes.more » « less
-
Two-dimensional graphene-like materials, namely MXenes, have been proposed as potential materials for various applications. In this work, the reactivity and selectivity of four MXenes ( i.e. M 2 C (M = Ti, V, Nb, Mo)) and their oxygen-functionalized forms ( i.e. O-MXenes or M 2 CO 2 ) toward gas molecules were investigated by using the plane wave-based Density Functional Theory (DFT) calculations. Small gas molecules, which are commonly found in flue gas streams, are considered herein. Our results demonstrated that MXenes are very reactive. Chemisorption is a predominant process for gas adsorption on MXenes. Simultaneously dissociative adsorption can be observed in most cases. The high reactivity of their non-functionalized surface is attractive for catalytic applications. In contrast, their reactivity is reduced, but the selectivity is improved upon oxygen functionalization. Mo 2 CO 2 and V 2 CO 2 present good selectivity toward NO molecules, while Nb 2 CO 2 and Ti 2 CO 2 show good selectivity toward NH 3 . The electronic charge properties explain the nature of the substrates and also interactions between them and the adsorbed gases. Our results indicated that O-MXenes are potential materials for gas-separation/capture, -storage, -sensing, etc. Furthermore, their structural stability and SO 2 -tolerant nature are attractive properties for using them in a wide range of applications. Our finding provides good information to narrow down the choices of materials to be tested in future experimental work.more » « less
-
Abstract MXenes are an emergent class of two-dimensional materials with a very wide spectrum of promising applications. The synthesis of multiple MXenes, specifically solid-solution MXenes, allows fine tuning of their properties, expands their range of applications, and leads to enhanced performance. The functionality of solid-solution MXenes is closely related to the valence state of their constituents: transition metals, oxygen, carbon, and nitrogen. However, the impact of changes in the oxidation state of elements in MXenes is not well understood. In this work, three interrelated solid-solution MXene systems (Ti 2− y Nb y CT x , Nb 2− y V y CT x , and Ti 2− y V y CT x ) were investigated with scanning transmission electron microscopy and electron energy-loss spectroscopy to determine the localized valence states of metals at the nanoscale. The analysis demonstrates changes in the electronic configuration of V upon modification of the overall composition and within individual MXene flakes. These shifts of oxidation state can explain the nonlinear optical and electronic features of solid-solution MXenes. Vanadium appears to be particularly sensitive to modification of the valence state, while titanium maintains the same oxidation state in Ti–Nb and Ti–V MXenes, regardless of stoichiometry. The study also explains Nb’s influential role in the previously observed electronic properties in the Nb–V and Nb–Ti systems.more » « less
An official website of the United States government

