skip to main content


This content will become publicly available on December 10, 2024

Title: Incentivized Communication for Federated Bandits
Most existing works on federated bandits take it for granted that all clients are altruistic about sharing their data with the server for the collective good whenever needed. Despite their compelling theoretical guarantee on performance and communication efficiency, this assumption is overly idealistic and oftentimes violated in practice, especially when the algorithm is operated over self-interested clients, who are reluctant to share data without explicit benefits. Negligence of such self-interested behaviors can significantly affect the learning efficiency and even the practical operability of federated bandit learning. In light of this, we aim to spark new insights into this under-explored research area by formally introducing an incentivized communication problem for federated bandits, where the server shall motivate clients to share data by providing incentives. Without loss of generality, we instantiate this bandit problem with the contextual linear setting and propose the first incentivized communication protocol, namely, Inc-FedUCB, that achieves near-optimal regret with provable communication and incentive cost guarantees. Extensive empirical experiments on both synthetic and real-world datasets further validate the effectiveness of the proposed method across various environments.  more » « less
Award ID(s):
2303372
PAR ID:
10532243
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
37th Conference on Neural Information Processing Systems (NeurIPS 2023).
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To enhance the efficiency and practicality of federated bandit learning, recent advances have introduced incentives to motivate communication among clients, where a client participates only when the incentive offered by the server outweighs its participation cost. However, existing incentive mechanisms naively assume the clients are truthful: they all report their true cost and thus the higher cost one participating client claims, the more the server has to pay. Therefore, such mechanisms are vulnerable to strategic clients aiming to optimize their own utility by misreporting. To address this issue, we propose an incentive compatible (i.e., truthful) communication protocol, named Truth-FedBan, where the incentive for each participant is independent of its self-reported cost, and reporting the true cost is the only way to achieve the best utility. More importantly, Truth-FedBan still guarantees the sub-linear regret and communication cost without any overhead. In other words, the core conceptual contribution of this paper is, for the first time, demonstrating the possibility of simultaneously achieving incentive compatibility and nearly optimal regret in federated bandit learning. Extensive numerical studies further validate the effectiveness of our proposed solution. 
    more » « less
  2. In this paper, we focus on the important yet understudied problem of Continual Federated Learning (CFL), where a server communicates with a set of clients to incrementally learn new concepts over time without sharing or storing any data. The complexity of this problem is compounded by challenges from both the Continual and Federated Learning perspectives. Specifically, models trained in a CFL setup suffer from catastrophic forgetting which is exacerbated by data heterogeneity across clients. Existing attempts at this problem tend to impose large overheads on clients and communication channels or require access to stored data which renders them unsuitable for real-world use due to privacy. We study this problem in the context of Foundation Models and showcase their effectiveness in mitigating forgetting while minimizing overhead costs and without requiring access to any stored data. We achieve this by leveraging a prompting based approach (such that only prompts and classifier heads have to be communicated) and proposing a novel and lightweight generation and distillation scheme to aggregate client models at the server. We formulate this problem for image classification and establish strong baselines for comparison, conduct experiments on CIFAR-100 as well as challenging, large-scale datasets like ImageNet-R and DomainNet. Our approach outperforms both existing methods and our own baselines by more than 7% while significantly reducing communication and client-level computation costs. 
    more » « less
  3. We consider a hierarchical inference system with multiple clients connected to a server via a shared communication resource. When necessary, clients with low-accuracy machine learning models can offload classification tasks to a server for processing on a high-accuracy model. We propose a distributed online offloading algorithm which maximizes the accuracy subject to a shared resource utilization constraint thus indirectly realizing accuracy-delay tradeoffs possible given an underlying network scheduler. The proposed algorithm, named Lyapunov-EXP4, introduces a loss structure based on Lyapunov-drift minimization techniques to the bandits with expert advice framework. We prove that the algorithm converges to a near-optimal threshold policy on the confidence of the clients’ local inference without prior knowledge of the system’s statistics and efficiently solves a constrained bandit problem with sublinear regret. We further consider settings where clients may employ multiple thresholds, allowing more aggressive optimization of overall accuracy at a possible loss in fairness. Extensive simulation results on real and synthetic data demonstrate convergence of Lyapunov-EXP4, and show the 
    more » « less
  4. null (Ed.)
    Federated multi-armed bandits (FMAB) is a new bandit paradigm that parallels the federated learning (FL) framework in supervised learning. It is inspired by practical applications in cognitive radio and recommender systems, and enjoys features that are analogous to FL. This paper proposes a general framework of FMAB and then studies two specific federated bandit models. We first study the approximate model where the heterogeneous local models are random realizations of the global model from an unknown distribution. This model introduces a new uncertainty of client sampling, as the global model may not be reliably learned even if the finite local models are perfectly known. Furthermore, this uncertainty cannot be quantified a priori without knowledge of the suboptimality gap. We solve the approximate model by proposing Federated Double UCB (Fed2-UCB), which constructs a novel “double UCB” principle accounting for uncertainties from both arm and client sampling. We show that gradually admitting new clients is critical in achieving an O(log(T)) regret while explicitly considering the communication loss. The exact model, where the global bandit model is the exact average of heterogeneous local models, is then studied as a special case. We show that, somewhat surprisingly, the order-optimal regret can be achieved independent of the number of clients with a careful choice of the update periodicity. Experiments using both synthetic and real-world datasets corroborate the theoretical analysis and demonstrate the effectiveness and efficiency of the proposed algorithms. 
    more » « less
  5. Camps-Valls, Gustau ; Ruiz, Francisco J. ; Valera, Isabel (Ed.)
    Linear contextual bandit is a popular online learning problem. It has been mostly studied in centralized learning settings. With the surging demand of large-scale decentralized model learning, e.g., federated learning, how to retain regret minimization while reducing communication cost becomes an open challenge. In this paper, we study linear contextual bandit in a federated learning setting. We propose a general framework with asynchronous model update and communication for a collection of homogeneous clients and heterogeneous clients, respectively. Rigorous theoretical analysis is provided about the regret and communication cost under this distributed learning framework; and extensive empirical evaluations demonstrate the effectiveness of our solution. 
    more » « less