In this paper, we focus on the important yet understudied problem of Continual Federated Learning (CFL), where a server communicates with a set of clients to incrementally learn new concepts over time without sharing or storing any data. The complexity of this problem is compounded by challenges from both the Continual and Federated Learning perspectives. Specifically, models trained in a CFL setup suffer from catastrophic forgetting which is exacerbated by data heterogeneity across clients. Existing attempts at this problem tend to impose large overheads on clients and communication channels or require access to stored data which renders them unsuitable for real-world use due to privacy. In this paper, we attempt to tackle forgetting and heterogeneity while minimizing overhead costs and without requiring access to any stored data. We study this problem in the context of Vision Transformers and explore parameter-efficient approaches to adapt to dynamic distributions while minimizing forgetting. We achieve this by leveraging a prompting based approach (such that only prompts and classifier heads have to be communicated) and proposing a novel and lightweight generation and distillation scheme to consolidate client models at the server. We formulate this problem for image classification and establish strong baselines for comparison, conduct experiments on CIFAR-100 as well as challenging, large-scale datasets like ImageNet-R and DomainNet. Our approach outperforms both existing methods and our own baselines by as much as 7% while significantly reducing communication and client-level computation costs. Code available at https://github.com/shaunak27/hepco-fed.
more »
« less
HePCo: Data-Free Heterogeneous Prompt Consolidation for Continual Federated Learning
In this paper, we focus on the important yet understudied problem of Continual Federated Learning (CFL), where a server communicates with a set of clients to incrementally learn new concepts over time without sharing or storing any data. The complexity of this problem is compounded by challenges from both the Continual and Federated Learning perspectives. Specifically, models trained in a CFL setup suffer from catastrophic forgetting which is exacerbated by data heterogeneity across clients. Existing attempts at this problem tend to impose large overheads on clients and communication channels or require access to stored data which renders them unsuitable for real-world use due to privacy. We study this problem in the context of Foundation Models and showcase their effectiveness in mitigating forgetting while minimizing overhead costs and without requiring access to any stored data. We achieve this by leveraging a prompting based approach (such that only prompts and classifier heads have to be communicated) and proposing a novel and lightweight generation and distillation scheme to aggregate client models at the server. We formulate this problem for image classification and establish strong baselines for comparison, conduct experiments on CIFAR-100 as well as challenging, large-scale datasets like ImageNet-R and DomainNet. Our approach outperforms both existing methods and our own baselines by more than 7% while significantly reducing communication and client-level computation costs.
more »
« less
- Award ID(s):
- 2239292
- PAR ID:
- 10489408
- Publisher / Repository:
- NeurIPS Workshops - R0-FoMo: Robustness of Few-shot and Zero-shot Learning in Foundation Models
- Date Published:
- Subject(s) / Keyword(s):
- Federated Continual Learning Continual Learning Lifelong Learning Federated Learning Foundation Models Prefix Tuning
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Continual Federated Learning (CFL) is a distributed machine learning technique that enables multiple clients to collaboratively train a shared model without sharing their data, while also adapting to new classes without forgetting previously learned ones. This dynamic, adaptive learning process parallels the concept of founda- tion models in FL, where large, pre-trained models are fine-tuned in a decentralized, federated setting. While foundation models in FL leverage pre-trained knowledge as a starting point, CFL continu- ously updates the shared model as new tasks and data distributions emerge, requiring ongoing adaptation. Currently, there are limited evaluation models and metrics in measuring fairness in CFL, and ensuring fairness over time can be challenging as the system evolves. To address this challenge, this article explores temporal fairness in CFL, examining how the fairness of the model can be influenced by the selection and participation of clients over time. Based on individual fairness, we introduce a novel fairness metric that captures temporal aspects of client behavior and evaluates different client selection strategies for their impact on promoting fairness.more » « less
-
Deep learning models are prone to forgetting information learned in the past when trained on new data. This problem becomes even more pronounced in the context of federated learning (FL), where data is decentralized and subject to independent changes for each user. Continual Learning (CL) studies this so-called \textit{catastrophic forgetting} phenomenon primarily in centralized settings, where the learner has direct access to the complete training dataset. However, applying CL techniques to FL is not straightforward due to privacy concerns and resource limitations. This paper presents a framework for federated class incremental learning that utilizes a generative model to synthesize samples from past distributions instead of storing part of past data. Then, clients can leverage the generative model to mitigate catastrophic forgetting locally. The generative model is trained on the server using data-free methods at the end of each task without requesting data from clients. Therefore, it reduces the risk of data leakage as opposed to training it on the client's private data. We demonstrate significant improvements for the CIFAR-100 dataset compared to existing baselines.more » « less
-
Federated Learning (FL) enables multiple clients to collaboratively learn a machine learning model without exchanging their own local data. In this way, the server can exploit the computational power of all clients and train the model on a larger set of data samples among all clients. Although such a mechanism is proven to be effective in various fields, existing works generally assume that each client preserves sufficient data for training. In practice, however, certain clients can only contain a limited number of samples (i.e., few-shot samples). For example, the available photo data taken by a specific user with a new mobile device is relatively rare. In this scenario, existing FL efforts typically encounter a significant performance drop on these clients. Therefore, it is urgent to develop a few-shot model that can generalize to clients with limited data under the FL scenario. In this paper, we refer to this novel problem as federated few-shot learning. Nevertheless, the problem remains challenging due to two major reasons: the global data variance among clients (i.e., the difference in data distributions among clients) and the local data insufficiency in each client (i.e., the lack of adequate local data for training). To overcome these two challenges, we propose a novel federated few-shot learning framework with two separately updated models and dedicated training strategies to reduce the adverse impact of global data variance and local data insufficiency. Extensive experiments on four prevalent datasets that cover news articles and images validate the effectiveness of our framework compared with the state-of-the-art baselines.more » « less
-
To enhance the efficiency and practicality of federated bandit learning, recent advances have introduced incentives to motivate communication among clients, where a client participates only when the incentive offered by the server outweighs its participation cost. However, existing incentive mechanisms naively assume the clients are truthful: they all report their true cost and thus the higher cost one participating client claims, the more the server has to pay. Therefore, such mechanisms are vulnerable to strategic clients aiming to optimize their own utility by misreporting. To address this issue, we propose an incentive compatible (i.e., truthful) communication protocol, named Truth-FedBan, where the incentive for each participant is independent of its self-reported cost, and reporting the true cost is the only way to achieve the best utility. More importantly, Truth-FedBan still guarantees the sub-linear regret and communication cost without any overhead. In other words, the core conceptual contribution of this paper is, for the first time, demonstrating the possibility of simultaneously achieving incentive compatibility and nearly optimal regret in federated bandit learning. Extensive numerical studies further validate the effectiveness of our proposed solution.more » « less
An official website of the United States government

