Contrastive learning is an effective unsupervised method in graph representation learning. The key component of contrastive learning lies in the construction of positive and negative samples. Previous methods usually utilize the proximity of nodes in the graph as the principle. Recently, the data-augmentation-based contrastive learning method has advanced to show great power in the visual domain, and some works have extended this method from images to graphs. However, unlike the data augmentation on images, the data augmentation on graphs is far less intuitive and it is much harder to provide high-quality contrastive samples, which leaves much space for improvement. In this work, by introducing an adversarial graph view for data augmentation, we propose a simple but effective method,Adversarial Graph Contrastive Learning(ArieL), to extract informative contrastive samples within reasonable constraints. We develop a new technique calledinformation regularizationfor stable training and use subgraph sampling for scalability. We generalize our method from node-level contrastive learning to the graph level by treating each graph instance as a super-node.ArieLconsistently outperforms the current graph contrastive learning methods for both node-level and graph-level classification tasks on real-world datasets. We further demonstrate thatArieLis more robust in the face of adversarial attacks.
more »
« less
This content will become publicly available on July 26, 2025
Enhancing Peak Assignment in 13C NMR Spectroscopy: A Novel Approach Using Multimodal Alignment
Nuclear magnetic resonance (NMR) spectroscopy plays an essential role in deciphering molecular structure and dynamic behaviors. While AI-enhanced NMR prediction models hold promise, challenges still persist in tasks such as molecular retrieval, iso- mer recognition, and peak assignment. In response, this paper introduces a novel solution, Knowledge-Guided Multi-Level Multimodal Alignment with Instance-Wise Discrimination (K-M3 AID), which establishes correspondences between two heterogeneous modalities: molecular graphs and NMR spectra. K- M3AID employs a dual-coordinated contrastive learning architecture with three key modules: a graph-level alignment module, a node-level alignment module, and a communication channel. Notably, K-M3AID introduces knowledge- guided instance-wise discrimination into contrastive learning within the node-level alignment module. In addition, K-M3 AID demonstrates that skills acquired during node-level alignment have a positive impact on graph-level alignment, acknowledging meta-learning as an inherent property. Empirical validation underscores the effectiveness of K-M3AID in multiple zero- shot tasks.
more »
« less
- Award ID(s):
- 2314156
- PAR ID:
- 10532250
- Publisher / Repository:
- AI4Science Workshop of 41st International Conference on Machine Learning
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Learning discriminative node representations benefits various downstream tasks in graph analysis such as community detection and node classification. Existing graph representation learning methods (e.g., based on random walk and contrastive learning) are limited to maximizing the local similarity of connected nodes. Such pair-wise learning schemes could fail to capture the global distribution of representations, since it has no explicit constraints on the global geometric properties of representation space. To this end, we propose Geometric Graph Representation Learning (G2R) to learn node representations in an unsupervised manner via maximizing rate reduction. In this way, G2R maps nodes in distinct groups (implicitly stored in the adjacency matrix) into different subspaces, while each subspace is compact and different subspaces are dispersedly distributed. G2R adopts a graph neural network as the encoder and maximizes the rate reduction with the adjacency matrix. Furthermore, we theoretically and empirically demonstrate that rate reduction maximization is equivalent to maximizing the principal angles between different subspaces. Experiments on real-world datasets show that G2R outperforms various baselines on node classification and community detection tasks.more » « less
-
Graphs are powerful representations for relations among objects, which have attracted plenty of attention in both academia and industry. A fundamental challenge for graph learning is how to train an effective Graph Neural Network (GNN) encoder without labels, which are expensive and time consuming to obtain. Contrastive Learning (CL) is one of the most popular paradigms to address this challenge, which trains GNNs by discriminating positive and negative node pairs. Despite the success of recent CL methods, there are still two under-explored problems. Firstly, how to reduce the semantic error introduced by random topology based data augmentations. Traditional CL defines positive and negative node pairs via the node-level topological proximity, which is solely based on the graph topology regardless of the semantic information of node attributes, and thus some semantically similar nodes could be wrongly treated as negative pairs. Secondly, how to effectively model the multiplexity of the real-world graphs, where nodes are connected by various relations and each relation could form a homogeneous graph layer. To solve these problems, we propose a novel multiplex heterogeneous graph prototypical contrastive leaning (X-GOAL) framework to extract node embeddings. X-GOAL is comprised of two components: the GOAL framework, which learns node embeddings for each homogeneous graph layer, and an alignment regularization, which jointly models different layers by aligning layer-specific node embeddings. Specifically, the GOAL framework captures the node-level information by a succinct graph transformation technique, and captures the cluster-level information by pulling nodes within the same semantic cluster closer in the embedding space. The alignment regularization aligns embeddings across layers at both node level and cluster level. We evaluate the proposed X-GOAL on a variety of real-world datasets and downstream tasks to demonstrate the effectiveness of the X-GOAL framework.more » « less
-
Graph neural networks (GNNs) have become increasingly popular for classification tasks on graph-structured data. Yet, the interplay between graph topology and feature evolution in GNNs is not well understood. In this paper, we focus on node- wise classification, illustrated with community detection on stochastic block model graphs, and explore the feature evolution through the lens of the “Neural Collapse” (NC) phenomenon. When training instance-wise deep classifiers (e.g. for image classification) beyond the zero training error point, NC demonstrates a reduction in the deepest features’ within-class variability and an increased alignment of their class means to certain symmetric structures. We start with an empirical study that shows that a decrease in within-class variability is also prevalent in the node-wise classification setting, however, not to the extent observed in the instance-wise case. Then, we theoretically study this distinction. Specifically, we show that even an “optimistic” mathematical model requires that the graphs obey a strict structural condition in order to possess a minimizer with exact collapse. Interestingly, this condition is viable also for heterophilic graphs and relates to recent empirical studies on settings with improved GNNs’ generalization. Furthermore, by studying the gradient dynamics of the theoretical model, we provide reasoning for the partial collapse observed empirically. Finally, we present a study on the evolution of within- and between-class feature variability across layers of a well-trained GNN and contrast the behavior with spectral methods.more » « less
-
Federated Graph Learning (FGL) aims to learn graph learning models over graph data distributed in multiple data owners, which has been applied in various applications such as social recommendation and financial fraud detection. Inherited from generic Federated Learning (FL), FGL similarly has the data heterogeneity issue where the label distribution may vary significantly for distributed graph data across clients. For instance, a client can have the majority of nodes from a class, while another client may have only a few nodes from the same class. This issue results in divergent local objectives and impairs FGL convergence for node-level tasks, especially for node classification. Moreover, FGL also encounters a unique challenge for the node classification task: the nodes from a minority class in a client are more likely to have biased neighboring information, which prevents FGL from learning expressive node embeddings with Graph Neural Networks (GNNs). To grapple with the challenge, we propose FedSpray, a novel FGL framework that learns local class-wise structure proxies in the latent space and aligns them to obtain global structure proxies in the server. Our goal is to obtain the aligned structure proxies that can serve as reliable, unbiased neighboring information for node classification. To achieve this, FedSpray trains a global feature-structure encoder and generates unbiased soft targets with structure proxies to regularize local training of GNN models in a personalized way. We conduct extensive experiments over four datasets, and experiment results validate the superiority of FedSpray compared with other baselines. Our code is available at https://github.com/xbfu/FedSpray.more » « less