skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: X-GOAL: Multiplex Heterogeneous Graph Prototypical Contrastive Learning
Graphs are powerful representations for relations among objects, which have attracted plenty of attention in both academia and industry. A fundamental challenge for graph learning is how to train an effective Graph Neural Network (GNN) encoder without labels, which are expensive and time consuming to obtain. Contrastive Learning (CL) is one of the most popular paradigms to address this challenge, which trains GNNs by discriminating positive and negative node pairs. Despite the success of recent CL methods, there are still two under-explored problems. Firstly, how to reduce the semantic error introduced by random topology based data augmentations. Traditional CL defines positive and negative node pairs via the node-level topological proximity, which is solely based on the graph topology regardless of the semantic information of node attributes, and thus some semantically similar nodes could be wrongly treated as negative pairs. Secondly, how to effectively model the multiplexity of the real-world graphs, where nodes are connected by various relations and each relation could form a homogeneous graph layer. To solve these problems, we propose a novel multiplex heterogeneous graph prototypical contrastive leaning (X-GOAL) framework to extract node embeddings. X-GOAL is comprised of two components: the GOAL framework, which learns node embeddings for each homogeneous graph layer, and an alignment regularization, which jointly models different layers by aligning layer-specific node embeddings. Specifically, the GOAL framework captures the node-level information by a succinct graph transformation technique, and captures the cluster-level information by pulling nodes within the same semantic cluster closer in the embedding space. The alignment regularization aligns embeddings across layers at both node level and cluster level. We evaluate the proposed X-GOAL on a variety of real-world datasets and downstream tasks to demonstrate the effectiveness of the X-GOAL framework.  more » « less
Award ID(s):
1939725 1947135 2134079
PAR ID:
10380763
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
CIKM
Page Range / eLocation ID:
894 to 904
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph representation learning is crucial for many real-world ap- plications (e.g. social relation analysis). A fundamental problem for graph representation learning is how to effectively learn rep- resentations without human labeling, which is usually costly and time-consuming. Graph contrastive learning (GCL) addresses this problem by pulling the positive node pairs (or similar nodes) closer while pushing the negative node pairs (or dissimilar nodes) apart in the representation space. Despite the success of the existing GCL methods, they primarily sample node pairs based on the node- level proximity yet the community structures have rarely been taken into consideration. As a result, two nodes from the same community might be sampled as a negative pair. We argue that the community information should be considered to identify node pairs in the same communities, where the nodes insides are seman- tically similar. To address this issue, we propose a novel Graph Communal Contrastive Learning (π‘”πΆπ‘œπ‘œπΏ) framework to jointly learn the community partition and learn node representations in an end-to-end fashion. Specifically, the proposed π‘”πΆπ‘œπ‘œπΏ consists of two components: a Dense Community Aggregation (𝐷𝑒𝐢𝐴) algo- rithm for community detection and a Reweighted Self-supervised Cross-contrastive (𝑅𝑒𝑆𝐢) training scheme to utilize the community information. Additionally, the real-world graphs are complex and often consist of multiple views. In this paper, we demonstrate that the proposed π‘”πΆπ‘œπ‘œπΏ can also be naturally adapted to multiplex graphs. Finally, we comprehensively evaluate the proposed π‘”πΆπ‘œπ‘œπΏ on a variety of real-world graphs. The experimental results show that the π‘”πΆπ‘œπ‘œπΏ outperforms the state-of-the-art methods. 
    more » « less
  2. null (Ed.)
    Multiplex networks are complex graph structures in which a set of entities are connected to each other via multiple types of relations, each relation representing a distinct layer. Such graphs are used to investigate many complex biological, social, and technological systems. In this work, we present a novel semi-supervised approach for structure-aware representation learning on multiplex networks. Our approach relies on maximizing the mutual information between local node-wise patch representations and label correlated structure-aware global graph representations to model the nodes and cluster structures jointly. Specifically, it leverages a novel cluster-aware, node-contextualized global graph summary generation strategy for effective joint-modeling of node and cluster representations across the layers of a multiplex network. Empirically, we demonstrate that the proposed architecture outperforms state-of-the-art methods in a range of tasks: classification, clustering, visualization, and similarity search on seven real-world multiplex networks for various experiment settings. 
    more » « less
  3. null (Ed.)
    Most graph neural network models learn embeddings of nodes in static attributed graphs for predictive analysis. Recent attempts have been made to learn temporal proximity of the nodes. We find that real dynamic attributed graphs exhibit complex phenomenon of co-evolution between node attributes and graph structure. Learning node embeddings for forecasting change of node attributes and evolution of graph structure over time remains an open problem. In this work, we present a novel framework called CoEvoGNN for modeling dynamic attributed graph sequence. It preserves the impact of earlier graphs on the current graph by embedding generation through the sequence of attributed graphs. It has a temporal self-attention architecture to model long-range dependencies in the evolution. Moreover, CoEvoGNN optimizes model parameters jointly on two dynamic tasks, attribute inference and link prediction over time. So the model can capture the co-evolutionary patterns of attribute change and link formation. This framework can adapt to any graph neural algorithms so we implemented and investigated three methods based on it: CoEvoGCN, CoEvoGAT, and CoEvoSAGE. Experiments demonstrate the framework (and its methods) outperforms strong baseline methods on predicting an entire unseen graph snapshot of personal attributes and interpersonal links in dynamic social graphs and financial graphs. 
    more » « less
  4. null (Ed.)
    Learning the low-dimensional representations of graphs (i.e., network embedding) plays a critical role in network analysis and facilitates many downstream tasks. Recently graph convolutional networks (GCNs) have revolutionized the field of network embedding, and led to state-of-the-art performance in network analysis tasks such as link prediction and node classification. Nevertheless, most of the existing GCN-based network embedding methods are proposed for unsigned networks. However, in the real world, some of the networks are signed, where the links are annotated with different polarities, e.g., positive vs. negative. Since negative links may have different properties from the positive ones and can also significantly affect the quality of network embedding. Thus in this paper, we propose a novel network embedding framework SNEA to learn Signed Network Embedding via graph Attention. In particular, we propose a masked self-attentional layer, which leverages self-attention mechanism to estimate the importance coefficient for pair of nodes connected by different type of links during the embedding aggregation process. Then SNEA utilizes the masked self-attentional layers to aggregate more important information from neighboring nodes to generate the node embeddings based on balance theory. Experimental results demonstrate the effectiveness of the proposed framework through signed link prediction task on several real-world signed network datasets. 
    more » « less
  5. The increasingly sophisticated Android malware calls for new defensive techniques that are capable of protecting mobile users against novel threats. In this paper, we first extract the runtime Application Programming Interface (API) call sequences from Android apps, and then analyze higher-level semantic relations within the ecosystem to comprehensively characterize the apps. To model different types of entities (i.e., app, API, device, signature, affiliation) and rich relations among them, we present a structured heterogeneous graph (HG) for modeling. To efficiently classify nodes (e.g., apps) in the constructed HG, we propose the HG-Learning method to first obtain in-sample node embeddings and then learn representations of out-of-sample nodes without rerunning/adjusting HG embeddings at the first attempt. We later design a deep neural network classifier taking the learned HG representations as inputs for real-time Android malware detection. Comprehensive experiments on large-scale and real sample collections from Tencent Security Lab are performed to compare various baselines. Promising results demonstrate that our developed system AiDroid which integrates our proposed method outperforms others in real-time Android malware detection. 
    more » « less