skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating Ultra‐Low Velocity Zones as Sources of PKP Scattering Beneath North America and the Western Pacific Ocean: Potential Links to Subducted Oceanic Crust
Abstract Seismic energy arriving before the compressional (P) wave passing through the core (PKP), called PKP precursors, have been detected for decades, but the origin of those arrivals is ambiguous. The largest amplitude arrivals are linked to scattering at small‐scale lowermost mantle structure, but because these arrivals traverse both source and receiver sides of the mantle, it is unknown which side of the path the energy is scattered from. To address this ambiguity, we apply a new seismic array method to analyze PKP waveforms from 58 earthquakes recorded in North America that allows localization of the origin of the PKP precursors at the core‐mantle boundary (CMB). We compare these measurements with high frequency 2.5‐D synthetic predictions showing that the PKP precursors are most likely associated with ultra‐low velocity zone structures beneath the western Pacific and North America. The most feasible scenario to generate ULVZs in both locations is through melting of mid‐ocean ridge basalt in subducted oceanic crust.  more » « less
Award ID(s):
1723081 2216564
PAR ID:
10532272
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
AGU Advances
Volume:
5
Issue:
4
ISSN:
2576-604X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Observations of seismic waves that have passed through the Earth's lowermost mantle provide insight into deep mantle structure and dynamics, often on relatively small spatial scales. Here we use SKS, S2KS, S3KS, and PKS signals recorded across a large region including the United States, Mexico, and Central America to study the deepest mantle beneath large swaths of North America and the northeastern Pacific Ocean. These phases are enhanced via beamforming and then used to investigate polarization‐ and propagation direction‐dependent shear wave speeds (seismic anisotropy). A differential splitting approach enables us to robustly identify contributions from anisotropy. Our results show strong seismic anisotropy in approximately half of our study region, indicating that anisotropy may be more prevalent than commonly thought. In some regions, the anisotropy may be induced by flow driven by sinking cold slabs, and in other, more compact regions, by upwelling flow. Measured splitting due to lowermost mantle anisotropy is sufficiently strong to be non‐negligible in interpretations of SKS splitting due to upper mantle anisotropy in certain regions, which may prompt future re‐evaluations of upper mantle anisotropy beneath North and Central America. 
    more » « less
  2. Qualitative and quantitative analysis of seismic waveforms sensitive to the core–mantle boundary (CMB) region reveal the presence of ultralow-velocity zones (ULVZs) that have a strong decrease in compressional (P) and shear (S) wave velocity, and an increase in density within thin structures. However, understanding their physical origin and relation to the other large-scale structures in the lowermost mantle are limited due to an incomplete mapping of ULVZs at the CMB. The SKS and SPdKS seismic waveforms is routinely used to infer ULVZ presence, but has thus far only been used in a limited epicentral distance range. As the SKS/SPdKS wavefield interacts with a ULVZ it generates additional seismic arrivals, thus increasing the complexity of the recorded wavefield. Here, we explore utilization of the multi-scale sample entropy method to search for ULVZ structures. We investigate the feasibility of this approach through analysis of synthetic seismograms computed for PREM, 1-, 2.5-, and 3-D ULVZs as well as heterogeneous structures with a strong increase in velocity in the lowermost mantle in 1- and 2.5-D. We find that the sample entropy technique may be useful across a wide range of epicentral distances from 100° to 130°. Such an analysis, when applied to real waveforms, could provide coverage of roughly 85% by surface area of the CMB. 
    more » « less
  3. SUMMARY Seismic traveltime anomalies of waves that traverse the uppermost 100–200 km of the outer core have been interpreted as evidence of reduced seismic velocities (relative to radial reference models) just below the core–mantle boundary (CMB). These studies typically investigate differential traveltimes of SmKS waves, which propagate as P waves through the shallowest outer core and reflect from the underside of the CMB m times. The use of SmKS and S(m-1)KS differential traveltimes for core imaging are often assumed to suppress contributions from earthquake location errors and unknown and unmodelled seismic velocity heterogeneity in the mantle. The goal of this study is to understand the extent to which differential SmKS traveltimes are, in fact, affected by anomalous mantle structure, potentially including both velocity heterogeneity and anisotropy. Velocity variations affect not only a wave's traveltime, but also the path of a wave, which can be observed in deviations of the wave's incoming direction. Since radial velocity variations in the outer core will only minimally affect the wave path, in contrast to other potential effects, measuring the incoming direction of SmKS waves provides an additional diagnostic as to the origin of traveltime anomalies. Here we use arrays of seismometers to measure traveltime and direction anomalies of SmKS waves that sample the uppermost outer core. We form subarrays of EarthScope's regional Transportable Array stations, thus measuring local variations in traveltime and direction. We observe systematic lateral variations in both traveltime and incoming wave direction, which cannot be explained by changes to the radial seismic velocity profile of the outer core. Moreover, we find a correlation between incoming wave direction and traveltime anomaly, suggesting that observed traveltime anomalies may be caused, at least in part, by changes to the wave path and not solely by perturbations in outer core velocity. Modelling of 1-D ray and 3-D wave propagation in global 3-D tomographic models of mantle velocity anomalies match the trend of the observed traveltime anomalies. Overall, we demonstrate that observed SmKS traveltime anomalies may have a significant contribution from 3-D mantle structure, and not solely from outer core structure. 
    more » « less
  4. Abstract Low‐velocity anomalies in the upper mantle beneath eastern North America, including the Northern Appalachian Anomaly (NAA), the Central Appalachian Anomaly (CAA), and the weaker Southern Coastal Anomaly (SCA), have been characterized by many continent‐scale and regional seismic studies. Different models have been proposed to explain their existence beneath the passive margin of eastern North America, variously invoking the past passage of hot spot tracks, modern upwelling due to edge‐driven convection, or other processes. Depending on the nature and origin of these anomalies, they may influence, and/or be influenced by, the mantle transition zone (MTZ) structure beneath them. Previous receiver function studies have identified an overall thinner MTZ beneath the eastern margin of the US than beneath the continental interior. In this study, we resolve the MTZ geometry beneath these low‐velocity anomalies in unprecedented detail using the scattered wavefield migration technique. We find substantially thinned MTZ beneath the NAA and the CAA, and a moderately thinned MTZ beneath the SCA. In all cases, the thinning is achieved via a minor depression of the 410‐km discontinuity and a major uplift of the 660‐km discontinuity, which suggests the presence of a series of MTZ‐penetrating deep upwellings beneath eastern North America. The upwellings beneath eastern North America and a similar style upwelling beneath Bermuda may initiate from ponded thermally buoyant materials below the MTZ fed by hot return flows from the descending Farallon slab in the deep mantle. 
    more » « less
  5. Abstract Strong small‐scale seismic scatters (<10 km) have been recently observed at 660 km depth, but their origin remains uncertain. We systematically conduct both high‐resolution 2‐D geodynamic computations that include realistic thermodynamic properties, synthetic seismic waveforms, and insight from shallow seismic observations to explore their origin. We demonstrate that neither short‐term subduction, nor long‐term mechanical mantle mixing processes can produce sufficiently strong heterogeneities to explain the origin of such small‐scale seismic scatters. Instead, the intrinsic heterogeneities inside the oceanic lithosphere which subducts into the mantle transition zone and the uppermost lower mantle can explain the observed short‐wavelength scatter waves. 
    more » « less