Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The dynamics of Earth's D″ layer at the base of the mantle plays an essential role in Earth's thermal and chemical evolution. Mantle convection in D″ is thought to result in seismic anisotropy; therefore, observations of anisotropy may be used to infer lowermost mantle flow. However, the connections between mantle flow and seismic anisotropy in D″ remain ambiguous. Here, we calculate the present‐day mantle flow field in D″ using 3D global geodynamic models. We then compute strain, a measure of deformation, outside the two large‐low velocity provinces (LLVPs) and compare the distribution of strain with previous observations of anisotropy. We find that, on a global scale, D″ materials are advected toward the LLVPs. The strains of D″ materials generally increase with time along their paths toward the LLVPs and toward deeper depths, but regions far from LLVPs may develop relative high strain as well. Materials in D″ outside the LLVPs mostly undergo lateral stretching, with the stretching direction often aligning with mantle flow direction, especially in fast flow regions. In most models, the depth‐averaged strain in D″ is >0.5 outside the LLVPs, consistent with widespread observations of seismic anisotropy. Flow directions inferred from anisotropy observations often (but not always) align with predictions from geodynamic modeling calculations.more » « less
-
Abstract We investigate broadband SPdKS waveforms from earthquakes occurring beneath Myanmar. These paths sample the core–mantle boundary beneath northwestern China. Waveform modeling shows that two ∼250 × 250 km wide ultra-low velocity zones (ULVZs) with a thickness of roughly 10 km exist in the region. The ULVZ models fitting these data have large S-wave velocity drops of 55% but relatively small 14% P-wave velocity reductions. This is almost a 4:1 S- to P-wave velocity ratio and is suggestive of a partial melt origin. These ULVZs exist in a region of the Circum-Pacific with a long history of subduction and far from large low-velocity province (LLVP) boundaries where ULVZs are more commonly observed. It is possible that these ULVZs are generated by partial melting of mid-ocean ridge basalt.more » « less
-
Abstract Seismic energy arriving before the compressional (P) wave passing through the core (PKP), called PKP precursors, have been detected for decades, but the origin of those arrivals is ambiguous. The largest amplitude arrivals are linked to scattering at small‐scale lowermost mantle structure, but because these arrivals traverse both source and receiver sides of the mantle, it is unknown which side of the path the energy is scattered from. To address this ambiguity, we apply a new seismic array method to analyze PKP waveforms from 58 earthquakes recorded in North America that allows localization of the origin of the PKP precursors at the core‐mantle boundary (CMB). We compare these measurements with high frequency 2.5‐D synthetic predictions showing that the PKP precursors are most likely associated with ultra‐low velocity zone structures beneath the western Pacific and North America. The most feasible scenario to generate ULVZs in both locations is through melting of mid‐ocean ridge basalt in subducted oceanic crust.more » « less
-
Abstract The Yellowstone region (western United States) is a commonly cited example of intraplate volcanism whose origin has been a topic of debate for several decades. Recent work has suggested that a deep mantle plume, rooted beneath southern California, is the source of Yellowstone volcanism. Seismic anisotropy, which typically results from deformation, can be used to identify and characterize mantle flow. Here, we show that the proposed plume root location at the base of the mantle is strongly seismically anisotropic. This finding is complemented by geodynamic modeling results showing upwelling flow and high strains in the lowermost mantle beneath the Yellowstone region. Our results support the idea that the Yellowstone volcanism is caused by a plume rooted in the deepest mantle beneath southern California, connecting dynamics in the deepest mantle with phenomena at Earth's surface.more » « less
-
Abstract Ultra‐low velocity zones (ULVZs) are anomalous structures, generally associated with decreased seismic velocity and sometimes an increase in density, that have been detected in some locations atop the Earth's core‐mantle boundary (CMB). A wide range of ULVZ characteristics have been reported by previous studies, leading to many questions regarding their origins. The lowermost mantle beneath Antarctica and surrounding areas is not located near currently active regions of mantle upwelling or downwelling, making it a unique environment in which to study the sources of ULVZs; however, seismic sampling of this portion of the CMB has been sparse. Here, we examine core‐reflected PcP waveforms recorded by seismic stations across Antarctica using a double‐array stacking technique to further elucidate ULVZ structure beneath the southern hemisphere. Our results show widespread, variable ULVZs, some of which can be robustly modeled with 1‐D synthetics; however, others are more complex, which may reflect 2‐D or 3‐D ULVZ structure and/or ULVZs with internal velocity variability. Our findings are consistent with the concept that ULVZs can be largely explained by variable accumulations of subducted oceanic crust along the CMB. Partial melting of subducted crust and other, hydrous subducted materials may also contribute to ULVZ variability.more » « less
-
Abstract Convective flow in the deep mantle controls Earth's dynamic evolution, influences plate tectonics, and has shaped Earth's current surface features. Present and past convection‐induced deformation manifests itself in seismic anisotropy, which is particularly strong in the mantle's uppermost and lowermost portions. While the general patterns of seismic anisotropy have been mapped for the upper mantle, anisotropy in the lowermost mantle (called D′′) is at an earlier stage of exploration. Here we review recent progress in methods to measure and interpret D′′ anisotropy. Our understanding of the limitations of existing methods and the development of new measurement strategies have been aided enormously by the availability of high‐performance computing resources. We give an overview of how measurements of seismic anisotropy can help constrain the mineralogy and fabric of the deep mantle. Specifically, new and creative strategies that combine multiple types of observations provide much tighter constraints on the geometry of anisotropy than have previously been possible. We also discuss how deep mantle seismic anisotropy provides insights into lowermost mantle dynamics. We summarize what we have learned so far from measurements of D′′ anisotropy, how inferences of lowermost mantle flow from measurements of seismic anisotropy relate to geodynamic models of mantle flow, and what challenges we face going forward. Finally, we discuss some of the important unsolved problems related to the dynamics of the lowermost mantle that can be elucidated in the future by combining observations of seismic anisotropy with geodynamic predictions of lowermost mantle flow.more » « less
An official website of the United States government
