skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MixRep: Hidden Representation Mixup for Low-Resource Speech Recognition
In this paper, we present MixRep, a simple and effective data augmentation strategy based on mixup for low-resource ASR. MixRep interpolates the feature dimensions of hidden representations in the neural network that can be applied to both the acoustic feature input and the output of each layer, which generalizes the previous MixSpeech method. Further, we propose to combine the mixup with a regularization along the time axis of the input, which is shown as complementary. We apply MixRep to a Conformer encoder of an E2E LAS architecture trained with a joint CTC loss. We experiment on the WSJ dataset and subsets of the SWB dataset, covering reading and telephony conversational speech. Experimental results show that MixRep consistently outperforms other regularization methods for low-resource ASR. Compared to a strong SpecAugment baseline, MixRep achieves a +6.5% and a +6.7% relative WER reduction on the eval92 set and the Callhome part of the eval'2000 set.  more » « less
Award ID(s):
2234916
PAR ID:
10532339
Author(s) / Creator(s):
;
Corporate Creator(s):
Editor(s):
ISCA
Publisher / Repository:
ISCA
Date Published:
Journal Name:
Interspeech
Edition / Version:
1
Volume:
1
Issue:
1
ISSN:
2958-1796
Page Range / eLocation ID:
1304 to 1308
Subject(s) / Keyword(s):
End-to-end Speech Recognition Low-resource Mixup Hidden Representations Data Augmentation Child Adult speech recognition
Format(s):
Medium: X Size: 580KB
Size(s):
580KB
Location:
Univ. of Texas at Dallas
Sponsoring Org:
National Science Foundation
More Like this
  1. Mixup is a popular regularization technique for training deep neural networks that improves generalization and increases robustness to certain distribution shifts. It perturbs input training data in the direction of other randomly-chosen instances in the training set. To better leverage the structure of the data, we extend mixup in a simple, broadly applicable way to k-mixup, which perturbs k-batches of training points in the direction of other k-batches. The perturbation is done with displacement interpolation, i.e. interpolation under the Wasserstein metric. We demonstrate theoretically and in simulations that k-mixup preserves cluster and manifold structures, and we extend theory studying the efficacy of standard mixup to the k-mixup case. Our empirical results show that training with k-mixup further improves generalization and robustness across several network architectures and benchmark datasets of differing modalities. For the wide variety of real datasets considered, the performance gains of k-mixup over standard mixup are similar to or larger than the gains of mixup itself over standard ERM after hyperparameter optimization. In several instances, in fact, k-mixup achieves gains in settings where standard mixup has negligible to zero improvement over ERM. 
    more » « less
  2. Self-supervised learning representations (SSLR) have resulted in robust features for downstream tasks in many fields. Recently, several SSLRs have shown promising results on automatic speech recognition (ASR) benchmark corpora. However, previous studies have only shown performance for solitary SSLRs as an input feature for ASR models. In this study, we propose to investigate the effectiveness of diverse SSLR combinations using various fusion methods within end-to-end (E2E) ASR models. In addition, we will show there are correlations between these extracted SSLRs. As such, we further propose a feature refinement loss for decorrelation to efficiently combine the set of input features. For evaluation, we show that the proposed “FeaRLESS learning features” perform better than systems without the proposed feature refinement loss for both the WSJ and Fearless Steps Challenge (FSC) corpora. 
    more » « less
  3. Recently, speech foundation models have gained popularity due to their superiority in finetuning downstream ASR tasks. However, models finetuned on certain domains, such as LibriSpeech (adult read speech), behave poorly on other domains (child or noisy speech). One solution could be collecting as much labeled and diverse data as possible for joint finetuning on various domains. However, collecting target domain speech-text paired data and retraining the model is often costly and computationally expensive. In this paper, we introduce a simple yet effective method, speech only adaptation (SOA), based on speech foundation models (Wav2vec 2.0), which requires only speech input data from the target domain. Specifically, the Wav2vec 2.0 feature encoder is continually pretrained with the Wav2vec 2.0 loss on both the source and target domain data for domain adaptation, while the contextual encoder is frozen. Compared to a source domain finetuned model with the feature encoder being frozen during training, we find that replacing the frozen feature encoder with the adapted one provides significant WER improvements to the target domain while preserving the performance of the source domain. The effectiveness of SOA is examined on various low resource or domain mismatched ASR settings, including adult-child and clean-noisy speech. 
    more » « less
  4. Mixup is a popular data augmentation technique based on taking convex combinations of pairs of examples and their labels. This simple technique has been shown to substantially improve both the robustness and the generalization of the trained model. However, it is not well-understood why such improvement occurs. In this paper, we provide theoretical analysis to demonstrate how using Mixup in training helps model robustness and generalization. For robustness, we show that minimizing the Mixup loss corresponds to approximately minimizing an upper bound of the adversarial loss. This explains why models obtained by Mixup training exhibits robustness to several kinds of adversarial attacks such as Fast Gradient Sign Method (FGSM). For generalization, we prove that Mixup augmentation corresponds to a specific type of data-adaptive regularization which reduces overfitting. Our analysis provides new insights and a framework to understand Mixup. 
    more » « less
  5. In the Mixup training paradigm, a model is trained using convex combinations of data points and their associated labels. Despite seeing very few true data points during training, models trained using Mixup seem to still minimize the original empirical risk and exhibit better generalization and robustness on various tasks when compared to standard training. In this paper, we investigate how these benefits of Mixup training rely on properties of the data in the context of classification. For minimizing the original empirical risk, we compute a closed form for the Mixup-optimal classification, which allows us to construct a simple dataset on which minimizing the Mixup loss can provably lead to learning a classifier that does not minimize the empirical loss on the data. On the other hand, we also give sufficient conditions for Mixup training to also minimize the original empirical risk. For generalization, we characterize the margin of a Mixup classifier, and use this to understand why the decision boundary of a Mixup classifier can adapt better to the full structure of the training data when compared to standard training. In contrast, we also show that, for a large class of linear models and linearly separable datasets, Mixup training leads to learning the same classifier as standard training. 
    more » « less