skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparison of empirical models of ionospheric heating to global simulations
Intense currents produced during geomagnetic storms dissipate energy in the ionosphere through Joule heating. This dissipation has significant space weather effects, and thus it is important to determine the ability of physics-based simulations to replicate real events quantitatively. Several empirical models estimate Joule heating based on ionospheric currents using the AE index. In this study, we select 11 magnetic storm simulations from the CCMC database and compare the integrated Joule heating in the simulations with the results of empirical models. We also use the SWMF global magnetohydrodynamic simulations for 12 storms to reproduce the correlation between the simulated AE index and simulated Joule heating. We find that the scale factors in the empirical models are half what is predicted by the SWMF simulations.  more » « less
Award ID(s):
2002574 1916604
PAR ID:
10532378
Author(s) / Creator(s):
;
Publisher / Repository:
Frontiers in Astronomy and Space Science
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
10
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sudden changes in energy input from the magnetosphere during geomagnetic storms could drive extreme variability in the ionosphere‐thermosphere system, which in turn affect satellite operations and other modern infrastructure. Joule heating is the main form of magnetospheric energy dissipation in the ionosphere‐thermosphere system, so it is important to know when and where Joule heating will occur. While Joule heating occurs all the time, it can increase rapidly during geomagnetic storms. We investigated the Joule heating profile of the 2013 St Patrick's day storm using the University of Michigan Global Ionosphere‐Thermosphere Model (GITM). Using empirical and data‐assimilated drivers we analyzed when and where intense Joule heating occurred. The timing, location, and sources of interhemispheric asymmetry during this geomagnetic storm are of key interest due to near equinox conditions. Hemispheric comparisons are made between parameters, including solar insolation, total electron content profiles, and Pedersen and Hall conductance profiles, obtained from GITM driven with empirical driven input, versus those driven with data‐assimilated patterns. Further comparisons are made during periods of peak hemispheric Joule heating asymmetry in an effort to investigate their potential sources. Additionally, we compare the consistency of the interhemispheric asymmetry between empirical‐ and data‐assimilated driven simulations to further analyze the role of data‐assimilated drivers on the IT system. 
    more » « less
  2. Abstract High latitude upper atmospheric inter‐hemispheric asymmetry (IHA) tends to be enhanced during geomagnetic storms, which may be due to the complex spatiotemporal changes and magnitude modifications in field aligned currents (FACs) and particle precipitation (PP). However, the relative contribution of FACs and PP to IHA in high‐latitude forcing and energy is not well understood. The IHA during the 2015 St. Patrick’s Day storm has been investigated using the global ionosphere thermosphere model (GITM), driven by FACs from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) and PP from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE). A comprehensive study of the (a) relative contributions of FACs and PP to electric potential and Joule heating and (b) sensitivity of electric potential and Joule heating to the changes in magnitude and distribution of FACs and PP is presented. The results indicate that FACs lead to larger potential and Joule heating changes compared with PP. The spatial variations of potential and Joule heating are also affected by variation in FACs. As for asymmetric magnitude and distribution, it is found that electric potential and Joule heating are more sensitive to changes in the distribution of FACs and PP than the magnitude of FACs and PP. A new spatial asymmetry index (SAI) is introduced, which reveals spatial asymmetric details that are often overlooked by previous studies. This sensitivity study reveals the relative contributions in high‐latitude forcing and emphasizes the importance of obtaining accurate FACs and PP in both hemispheres. 
    more » « less
  3. Although global magnetohydrodynamic (MHD) models have increased in sophistication and are now at the forefront of modeling Space Weather, there is still no clear understanding of how well these models replicate the observed ionospheric current systems. Without a full understanding and treatment of the ionospheric current systems, global models will have significant shortcomings that will limit their use. In this study we focus on reproducing observed seasonal interhemispheric asymmetry in ionospheric currents using the Space Weather Modeling Framework (SWMF). We find that SWMF does reproduce the linear relationship between the electrojets and the FACs, despite the underestimation of the currents’ magnitudes. Quantitatively, we find that at best SWMF is only capturing approximately 60% of the observed current. We also investigate how varying F10.7 effects the ionospheric potential and currents during the summer and winter. We find that simulations ran with higher F10.7 result in lower ionospheric potentials. Additionally, we find that the models do not always replicate the expected behavior of the currents with varying F10.7. This work points to a needed improvement in ionospheric conductance models. 
    more » « less
  4. Abstract Understanding the mechanisms underlying the heating of the solar atmosphere is a fundamental problem in solar physics. In this paper, we present an overview of our research on understanding the heating mechanism of the solar active region atmosphere in chromosphere. We investigate Joule heating due to the dissipation of currents perpendicular to the magnetic field by the Cowling resistivity using a data-constrained analysis based on observational and tabulated theoretical/semi-empirical solar atmosphere model data. As target region, we focus on a sunspot umbral light bridge where we find that this heating mechanism plays an important role and is also highly dynamic. 
    more » « less
  5. Abstract The Starlink satellites launched on 3 February 2022 were lost before they fully arrived in their designated orbits. The loss was attributed to two moderate geomagnetic storms that occurred consecutively on 3–4 February. We investigate the thermospheric neutral mass density variation during these storms with the Multiscale Atmosphere‐Geospace Environment (MAGE) model, a first‐principles, fully coupled geospace model. Simulated neutral density enhancements are validated by Swarm satellite measurements at the altitude of 400–500 km. Comparison with standalone TIEGCM and empirical NRLMSIS 2.0 and DTM‐2013 models suggests better performance by MAGE in predicting the maximum density enhancement and resolving the gradual recovery process. Along the Starlink satellite orbit in the middle thermosphere (∼200 km altitude), MAGE predicts up to 150% density enhancement near the second storm peak while standalone TIEGCM, NRLMSIS 2.0, and DTM‐2013 suggest only ∼50% increase. MAGE also suggests altitudinal, longitudinal, and latitudinal variability of storm‐time percentage density enhancement due to height dependent Joule heating deposition per unit mass, thermospheric circulation changes, and traveling atmospheric disturbances. This study demonstrates that a moderate storm can cause substantial density enhancement in the middle thermosphere. Thermospheric mass density strongly depends on the strength, timing, and location of high‐latitude energy input, which cannot be fully reproduced with empirical models. A physics‐based, fully coupled geospace model that can accurately resolve the high‐latitude energy input and its variability is critical to modeling the dynamic response of thermospheric neutral density during storm time. 
    more » « less