skip to main content


This content will become publicly available on July 1, 2024

Title: Understanding the heating mechanism of the solar active region atmosphere in chromosphere
Abstract Understanding the mechanisms underlying the heating of the solar atmosphere is a fundamental problem in solar physics. In this paper, we present an overview of our research on understanding the heating mechanism of the solar active region atmosphere in chromosphere. We investigate Joule heating due to the dissipation of currents perpendicular to the magnetic field by the Cowling resistivity using a data-constrained analysis based on observational and tabulated theoretical/semi-empirical solar atmosphere model data. As target region, we focus on a sunspot umbral light bridge where we find that this heating mechanism plays an important role and is also highly dynamic.  more » « less
Award ID(s):
2020703 2230633
NSF-PAR ID:
10438100
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Physics: Conference Series
Volume:
2544
Issue:
1
ISSN:
1742-6588
Page Range / eLocation ID:
012006
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. Magnetic flux emergence from the solar interior has been shown to be a key mechanism for unleashing a wide variety of phenomena. However, there are still open questions concerning the rise of the magnetized plasma through the atmosphere, mainly in the chromosphere, where the plasma departs from local thermodynamic equilibrium (LTE) and is partially ionized. Aims. We aim to investigate the impact of the nonequilibrium (NEQ) ionization and recombination and molecule formation of hydrogen, as well as ambipolar diffusion, on the dynamics and thermodynamics of the flux emergence process. Methods. Using the radiation-magnetohydrodynamic Bifrost code, we performed 2.5D numerical experiments of magnetic flux emergence from the convection zone up to the corona. The experiments include the NEQ ionization and recombination of atomic hydrogen, the NEQ formation and dissociation of H 2 molecules, and the ambipolar diffusion term of the generalized Ohm’s law. Results. Our experiments show that the LTE assumption substantially underestimates the ionization fraction in most of the emerged region, leading to an artificial increase in the ambipolar diffusion and, therefore, in the heating and temperatures as compared to those found when taking the NEQ effects on the hydrogen ion population into account. We see that LTE also overestimates the number density of H 2 molecules within the emerged region, thus mistakenly magnifying the exothermic contribution of the H 2 molecule formation to the thermal energy during the flux emergence process. We find that the ambipolar diffusion does not significantly affect the amount of total unsigned emerged magnetic flux, but it is important in the shocks that cross the emerged region, heating the plasma on characteristic times ranging from 0.1 to 100 s. We also briefly discuss the importance of including elements heavier than hydrogen in the equation of state so as not to overestimate the role of ambipolar diffusion in the atmosphere. 
    more » « less
  2. null (Ed.)
    Context. Spectroscopic observations of the emission lines formed in the solar transition region commonly show persistent downflows on the order of 10−15 km s −1 . The cause of such downflows, however, is still not fully clear and has remained a matter of debate. Aims. We aim to understand the cause of such downflows by studying the coronal and transition region responses to the recently reported chromospheric downflowing rapid redshifted excursions (RREs) and their impact on the heating of the solar atmosphere. Methods. We have used two sets of coordinated data from the Swedish 1 m Solar Telescope, the Interface Region Imaging Spectrograph, and the Solar Dynamics Observatory for analyzing the response of the downflowing RREs in the transition region and corona. To provide theoretical support, we use an already existing 2.5D magnetohydrodynamic simulation of spicules performed with the Bifrost code. Results. We find ample occurrences of downflowing RREs and show several examples of their spatio-temporal evolution, sampling multiple wavelength channels ranging from the cooler chromospheric to the hotter coronal channels. These downflowing features are thought to be likely associated with the returning components of the previously heated spicular plasma. Furthermore, the transition region Doppler shifts associated with them are close to the average redshifts observed in this region, which further implies that these flows could (partly) be responsible for the persistent downflows observed in the transition region. We also propose two mechanisms – (i) a typical upflow followed by a downflow and (ii) downflows along a loop –from the perspective of a numerical simulation that could explain the ubiquitous occurrence of such downflows. A detailed comparison between the synthetic and observed spectral characteristics reveals a distinctive match and further suggests an impact on the heating of the solar atmosphere. Conclusions. We present evidence that suggests that at least some of the downflowing RREs are the chromospheric counterparts of the transition region and lower coronal downflows. 
    more » « less
  3. Abstract We present EUV solar observations showing evidence for omnipresent jetting activity driven by small-scale magnetic reconnection at the base of the solar corona. We argue that the physical mechanism that heats and drives the solar wind at its source is ubiquitous magnetic reconnection in the form of small-scale jetting activity (a.k.a. jetlets). This jetting activity, like the solar wind and the heating of the coronal plasma, is ubiquitous regardless of the solar cycle phase. Each event arises from small-scale reconnection of opposite-polarity magnetic fields producing a short-lived jet of hot plasma and Alfvén waves into the corona. The discrete nature of these jetlet events leads to intermittent outflows from the corona, which homogenize as they propagate away from the Sun and form the solar wind. This discovery establishes the importance of small-scale magnetic reconnection in solar and stellar atmospheres in understanding ubiquitous phenomena such as coronal heating and solar wind acceleration. Based on previous analyses linking the switchbacks to the magnetic network, we also argue that these new observations might provide the link between the magnetic activity at the base of the corona and the switchback solar wind phenomenon. These new observations need to be put in the bigger picture of the role of magnetic reconnection and the diverse form of jetting in the solar atmosphere. 
    more » « less
  4. Viegas, Domingos Xavier (Ed.)
    During the summer of 2015, a number of wildfires fires burned across northern California, which produced significant smoke across the region. Smoke from these wildfires hindered fire-fighting efforts by delaying helicopter operations and exposed communities to high concentrations of atmospheric pollutants. Nighttime inversions are common across the western U.S. and usually mix out during the early afternoon as a result of convective mixing from daytime heating. However, atmospheric conditions in valleys adjacent to the aforementioned wildfires remained stable throughout the afternoon. It is hypothesized that the smoke from nearby wildfires enhanced atmospheric stability due to surface cooling caused by reduced incoming solar radiation, and possibly by warming aloft due to absorption of the incoming solar radiation in the smoke layer. At the same time, mid-level heating from the wildfire could have increased atmospheric stability and extended the duration of the inversion. In this study, we utilize the WRF-SFIRE-CHEM modeling framework, which couples an atmospheric, chemical, and fire spread model in an effort the model the impacts of smoke on local inversions and to improve the physical understanding behind these smoke-induced inversion episodes. This modeling framework was used to simulate the Route and South Complex fires between August 10 – August 26th, 2015. Preliminary results indicate that wildfire smoke may have significantly reduced incoming solar radiation, leading to local surface cooling by up to 2-3 degrees. Direct heating from the fire itself does not significantly enhance atmospheric stability. However, mid-level warming was observed in the smoke layer suggesting that absorption in this layer may have enhanced the inversion. This study suggests the including the fire-smoke- atmosphere feedbacks in a coupled modeling framework such as WRF-SFIRE-CHEM may help in capturing the impacts of wildfire smoke on near-surface stability and local inversions. 
    more » « less
  5. Abstract

    During solar flares, spectral lines formed in the photosphere have been shown to exhibit changes to their profiles despite the challenges of energy transfer to these depths. Recent work has shown that deep-forming spectral lines are subject to significant contributions from regions above the photosphere throughout the flaring period, resulting in a composite emergent intensity profile from multiple layers of the atmosphere. We employ radiative–hydrodynamic and radiative transfer calculations to simulate the response of the solar/stellar atmosphere to electron beam heating and synthesize spectral lines of Feito investigate the line-of-sight velocity fields information available from Doppler shifts of the emergent intensity profile. By utilizing the contribution function to deconstruct the line profile shape into its constituent sources, we show that variations in the line profiles are primarily caused by changes in the chromosphere. Up-flows in this region were found to create blueshifts orfalseredshifts in the line core dependent on the relative contribution of the chromosphere compared to the photosphere. In extreme solar and stellar flare scenarios featuring explosive chromospheric condensations, redshifted transient components can dominate the temporal evolution of the profile shape, requiring a tertiary component consideration to fully characterize. We conclude that deep-forming lines require a multicomponent understanding and treatment, with different regions of the spectral line being useful for probing individual regions of the atmosphere’s velocity flows.

     
    more » « less