skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating Potential Causes for the Prediction of Spurious Magnetopause Crossings at Geosynchronous Orbit in MHD Simulations
Abstract During intense geomagnetic storms, the magnetopause can move in as far as geosynchronous orbit, leaving the satellites in that orbit out in the magnetosheath. Spacecraft operators turn to numerical models to predict the response of the magnetopause to solar wind conditions, but the predictions of the models are not always accurate. This study investigates four storms with a magnetopause crossing by at least one GOES satellite, using four magnetohydrodynamic models at NASA's Community Coordinated Modeling Center to simulate the events, and analyzes the results to investigate the reasons for errors in the predictions. Two main reasons can explain most of the erroneous predictions. First, the solar wind input to the simulations often contains features measured near the L1 point that did not eventually arrive at Earth; incorrect predictions during such periods are due to the solar wind input rather than to the models themselves. Second, while the models do well when the primary driver of magnetopause motion is a variation in the solar wind density, they tend to overpredict or underpredict the integrated Birkeland currents and their effects during times of strong negative interplanetary magnetic field (IMF)Bz, leading to poorer prediction capability. Coupling the MHD codes to a ring current model, when such a coupling is available, generally will improve the predictions but will not always entirely correct them. More work is needed to fully characterize the response of each code under strong southward IMF conditions as it relates to prediction of magnetopause location.  more » « less
Award ID(s):
2002574
PAR ID:
10532382
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Space Weather
Volume:
21
Issue:
6
ISSN:
1542-7390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The magnetotail lobe region at Mercury is characterized by low plasma density and low magnetic field variability compared to the nightside magnetosheath and central plasma sheet. At Mercury, as well as other planets, lobe magnetic fields play a crucial role in storing and releasing magnetic flux in response to changing upstream solar wind conditions such as interplanetary magnetic field (IMF) orientation and solar wind dynamic pressure (Pdyn). This makes the region significant for studying the magnetospheric interaction with the intense solar wind conditions at Mercury's orbit. Here, we identify and analyze magnetotail lobe observations made by the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft during its 4 years orbital phase. We empirically determined a set of criteria using magnetometer (MAG) and the Fast Imaging Plasma Spectrometer instruments onboard MESSENGER to identify lobe magnetic field intervals. From 3,332 MESSENGER orbits, we identify 1,242 lobe field intervals. We derive an expression for the average lobe magnetic field strength in nanotesla with respect to radial distance downtail:Blobe(r) = (135 ± 8) * r(−2.1±0.3) + (31 ± 8). The lobe magnetic field exhibits both small‐scale (∼3 min) and orbit‐to‐orbit (∼8–12 hr) variability in magnetic field strength compared to this averaged field strength expression. The orbit‐to‐orbit variability in lobe field strength is not significantly correlated with estimated IMF orientation, but is directly correlated withPdyn. Thus, our findings provide evidence for the pressure balance between the inward facingPdynon the nightside magnetopause and the outward facing magnetic pressure supplied by the lobes. 
    more » « less
  2. Abstract Solar wind directional discontinuities, such as rotational discontinuities (RDs), significantly influence energy and transport processes in the Earth's magnetosphere. A recent observational study identified a long‐lasting double cusp precipitation event associated with RD in solar wind on 10 April 2015. To understand the magnetosphere‐ionosphere response to the solar wind RD, a global hybrid simulation of the magnetosphere was conducted, with solar wind conditions based on the observation event. The simulation results show significant variations in the magnetopause and cusp regions caused by the passing RD. After the RD propagates to the magnetopause, ion precipitation intensifies, and a double cusp structure at varying latitudes and longitudes forms near noon in the northern hemisphere, which is consistent with the satellite observations by Wing et al. (2023,https://doi.org/10.1029/2023gl103194). Regarding dayside magnetopause reconnection, the simulation reveals that the high‐latitude reconnection process persists during the RD passing, regardless of whether the interplanetary magnetic field (IMF) with a highBy/Bzratio has a positive or negativeBzcomponent, and low‐latitude reconnection occurs after the RD reaches the magnetopause at noon when the IMF turns southward. By examining the ion sources along the magnetic field lines, a connection is found between the single‐ or double‐cusp ion precipitation and the solar wind ions entering from both high‐latitude and low‐latitude reconnection sites. This result suggests that the double‐cusp structure can be triggered by magnetic reconnection occurring at both low latitudes and high latitudes in the opposite hemispheres, associated with a largeBy/Bzratio of the IMF around the RD. 
    more » « less
  3. Abstract Magnetic reconnection occurring between the interplanetary magnetic field (IMF) and the dayside magnetopause causes a circulation of magnetic flux and plasma within the magnetosphere, known as the Dungey cycle. This circulation is transmitted to the ionosphere via field‐aligned currents (FACs). The magnetic flux transport within the Dungey cycle is quantified by the cross‐polar cap potential (CPCP or transpolar voltage). Previous studies have suggested that under strong driving conditions the CPCP can saturate near a value of 250 kV. In this study we investigate whether an analogous saturation occurs in the magnitudes of the FACs, using observations from the Active Magnetosphere and Planetary Electrodynamics Response Experiment. The solar wind speed, density and pressure, theBzcomponent of the IMF, and combinations of these, were compared to the concurrent integrated current magnitude, across each hemisphere. We find that FAC magnitudes are controlled most strongly by solar wind speed and the orientation and strength of the IMF. FAC magnitude increases monotonically with solar wind driving but there is a distinct knee in the variation around IMFBz = −10 nT, above which the increase slows. 
    more » « less
  4. Abstract The total energy transfer from the solar wind to the magnetosphere is governed by the reconnection rate at the magnetosphere edges as the Z‐component of interplanetary magnetic field (IMFBz) turns southward. The geomagnetic storm on 21–22 January 2005 is considered to be anomalous as the SYM‐H index that signifies the strength of ring current, decreases and had a sustained trough value of −101 nT lasting more than 6 hr under northward IMFBzconditions. In this work, the standard WINDMI model is utilized to estimate the growth and decay of magnetospheric currents by using several solar wind‐magnetosphere coupling functions. However, it is found that the WINDMI model driven by any of these coupling functions is not fully able to explain the decrease of SYM‐H under northward IMFBz. A dense plasma sheet along with signatures of a highly stretched magnetosphere was observed during this storm. The SYM‐H variations during the entire duration of the storm were only reproduced after modifying the WINDMI model to account for the effects of the dense plasma sheet. The limitations of directly driven models relying purely on the solar wind parameters and not accounting for the state of the magnetosphere are highlighted by this work. 
    more » « less
  5. Abstract In the present study we investigate the response of the dayside ground magnetic field to the sequence of interplanetary magnetic field (IMF)BYchanges during the May 2024 geomagnetic storm. We pay particular attention to its extraordinarily large (>120 nT) and abrupt flip, and use GOES‐18 (G18) magnetic field measurements in the dayside magnetosheath as a time reference. In the dayside auroral zone, the northward magnetic component changed by as much as 4,300 nT from negative to positive indicating that the direction of the auroral electrojet changed from westward to eastward. The overall sequence was consistent with the conventional understanding of the IMFBYdriving of zonal ionospheric flows and Hall currents, which is also confirmed by a global simulation conducted for this storm. Surprisingly, however, the time delay from G18 to the ground increased significantly in time. The delay was 2–3 min for a sharpBYreduction ∼30 min prior to theBYflip, but it became as long as 10 min for the zero‐crossing of theBYflip. It is suggested that the prolonged time delay reflected the travel time from G18 to the reconnection site, which sensitively depends on the final velocity at the magnetopause, that is, the inflow velocity of the magnetic reconnection. Around theBYflip, the solar wind number density transiently exceeded 100 cm−3, and should have increased further through the bow shock crossing. It is suggested that this unusually dense plasma reduced the reconnection rate, and therefore, the solar wind‐magnetosphere energy coupling due to the extraordinary IMF. 
    more » « less