Chemical reactions that mimic the function of ATP hydrolysis in biochemistry are of current interest in nonequilibrium systems chemistry. The formation of transient bonds from these reactions can drive molecular machines or generate materials with time-dependent properties. While the behavior of these systems can be complicated, the underlying chemistry is often simple: they are therefore potentially interesting topics for undergraduate introductory organic chemistry students, combining state-of-the-art advances in systems chemistry with straightforward reactions. Here, a teaching experiment has been developed that explores the transient assembly of benzoic acid derivatives driven by carbodiimide hydration. Working in teams, students examine the formation and decomposition of anhydrides from two benzoic acids using a carbodiimide “fuel”. The students examine classic reaction kinetics of anhydride hydrolysis using two independent methods, NMR and IR spectroscopies. They then explore how the amount of carbodiimide affects the lifetimes of precipitates of benzoic anhydride as a simple example of out-of-equilibrium self-assembly.
more »
« less
Showing the Bonds—A Subtle but Important Difference in Figure Design that May Alleviate Student Confusion about ATP Hydrolysis
A misconception among biology students is that breaking bonds in adenosine triphosphate (ATP) releases energy. This misconception may be related to imprecise representations of chemical bonding in common diagrams of ATP hydrolysis. We interviewed 33 undergraduate students and randomly assigned them to interpret a figure of ATP hydrolysis that either emphasized bond breaking in the reactants or the formation of new bonds in the products. Students who saw the figure emphasizing bond breaking were more likely to incorrectly classify ATP hydrolysis as endergonic, while students who saw the figure explicitly illustrating bond formation were more likely to use chemically-sound reasoning to describe the reaction.
more »
« less
- Award ID(s):
- 2222337
- PAR ID:
- 10639687
- Publisher / Repository:
- microPublication Biology
- Date Published:
- Journal Name:
- microPublication biology
- Volume:
- 2025
- ISSN:
- 2578-9430
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper explores the effect of a paired lab course on students’ course outcomes in nonmajors introductory biology at the University of Alaska Anchorage. We compare course completion and final grades for 10,793 students (3736 who simultaneously enrolled in the lab and 7057 who did not). Unconditionally, students who self-select into the lab are more likely to complete the course and to earn a higher grade than students who do not. However, when we condition on observable course, academic, and demographic characteristics, we find much of this difference in student performance outcomes is attributable to selection bias, rather than an effect of the lab itself. The data and discussion challenge the misconception that labs serve as recitations for lecture content, noting that the learning objectives of science labs should be more clearly articulated and assessed independent of lecture course outcomes.more » « less
-
Abstract Dissolved organic phosphorus (DOP) contains compounds with phosphoester, phosphoanhydride, and phosphorus–carbon bonds. While DOP holds significant nutritional value for marine microorganisms, the bioavailability of each bond-class to the widespread cyanobacterium Synechococcus remains largely unknown. This study evaluates bond-class specific DOP utilization by Synechococcus strains from open and coastal oceans. Both strains exhibited comparable growth rates when provided phosphate, a phosphoanhydride [3-polyphosphate and 45-polyphosphate], or a DOP compound with both phosphoanhydride and phosphoester bonds (adenosine 5′-triphosphate). Growth rates on phosphoesters [glucose-6-phosphate, adenosine 5′-monophosphate, bis(4-methylumbelliferyl) phosphate] were variable, and neither strain grew on selected phosphorus–carbon compounds. Both strains hydrolyzed 3-polyphosphate, then adenosine 5′-triphosphate, and lastly adenosine 5′-monophosphate, exhibiting preferential enzymatic hydrolysis of phosphoanhydride bonds. The strains’ exoproteomes contained phosphorus hydrolases, which combined with enhanced cell-free hydrolysis of 3-polyphosphate and adenosine 5′-triphosphate under phosphate deficiency, suggests active mineralization of phosphoanhydride bonds by these exoproteins. Synechococcus alkaline phosphatases presented broad substrate specificities, including activity toward the phosphoanhydride 3-polyphosphate, with varying affinities between strains. Collectively, these findings underscore the potentially significant role of compounds with phosphoanhydride bonds in Synechococcus phosphorus nutrition and highlight varied growth and enzymatic responses to molecular diversity within DOP bond-classes, thereby expanding our understanding of microbially mediated DOP cycling in marine ecosystems.more » « less
-
Abstract Bond breaking and forming are essential components of chemical reactions. Recently, the structure and formation of covalent bonds in single molecules have been studied by non-contact atomic force microscopy (AFM). Here, we report the details of a single dative bond breaking process using non-contact AFM. The dative bond between carbon monoxide and ferrous phthalocyanine was ruptured via mechanical forces applied by atomic force microscope tips; the process was quantitatively measured and characterized both experimentally and via quantum-based simulations. Our results show that the bond can be ruptured either by applying an attractive force of ~150 pN or by a repulsive force of ~220 pN with a significant contribution of shear forces, accompanied by changes of the spin state of the system. Our combined experimental and computational studies provide a deeper understanding of the chemical bond breaking process.more » « less
-
Despite growing interest in polymers under extreme conditions, most atomistic molecular dynamics simulations cannot describe the bond scission events underlying failure modes in polymer networks undergoing large strains. In this work, we propose a physics-based machine learning approach that can detect and perform bond breaking with near quantum-chemical accuracy on-the-fly in atomistic simulations. Particularly, we demonstrate that by coarse-graining highly correlated neighboring bonds, the prediction accuracy can be dramatically improved. By comparing with existing quantum mechanics/molecular mechanics methods, our approach is approximately two orders of magnitude more efficient and exhibits improved sensitivity toward rare bond breaking events at low strain. The proposed bond breaking molecular dynamics scheme enables fast and accurate modeling of strain hardening and material failure in polymer networks and can accelerate the design of polymeric materials under extreme conditions.more » « less
An official website of the United States government

