skip to main content


Title: Properties of Carbon Dots versus Small Molecules from “Bottom-up” Synthesis
A major challenge in the “bottom-up” solvothermal synthesis of carbon dots (CDs) is the removal of small-molecule byproducts, noncarbonized polyamides, or other impurities that confound the optical properties. In previously reported benzene diamine-based CDs, the observed fluorescence signal already has been shown to arise from free small molecules, not from nanosized carbonized dots. Here we have unambiguously identified the small-molecule species in the synthesis of CDs starting with several isomers of benzene diamine by directly matching their NMR, mass spectrometry, and optical data with commercially available small organic molecules. By combining dialysis and chromatography, we have sufficiently purified the CD reaction mixtures to measure the CD size by TEM and STM, elemental composition, optical absorption and emission, and single-particle blinking dynamics. The results can be rationalized by electronic structure calculations on small model CDs. Our results conclusively show that the purified benzene diamine-based CDs do not emit red fluorescence, so the quest for full-spectrum fluorescence from isomers of a single precursor molecule remains open.  more » « less
Award ID(s):
2413590
PAR ID:
10532672
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Nano
Volume:
17
Issue:
22
ISSN:
1936-0851
Page Range / eLocation ID:
22788 to 22799
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Carbon dots (CDs) being a new type of carbon‐based nanomaterial have attracted intensive interest from researchers owing to their excellent biophysical properties. CDs are a class of fluorescent carbon nanomaterials that have emerged as a promising alternative to traditional quantum dots and organic dyes in applications including bioimaging, sensing, and optoelectronics. CDs possess unique optical properties, such as tunable emission, facile synthesis, and low toxicity, making them attractive for many applications in biology, medicine, and environmental areas. The synthesis of CDs is achievable by a variety of methods, including bottom‐up and top‐down approaches, involving the use of different carbon sources and surface functionalization strategies. However, understanding the fluorescence mechanism of CDs remains a challenge. Various mechanistic models have been proposed to explain their origin of luminescence. This review summarizes the recent developments in the synthesis and functionalization of CDs and provides an overview of the current understanding of the fluorescence mechanism.

     
    more » « less
  2. null (Ed.)
    Multicolor carbon dots (CDs) have been developed recently and demonstrate great potential in bio-imaging, sensing, and LEDs. However, the fluorescence mechanism of their tunable colors is still under debate, and efficient separation methods are still challenging. Herein, we synthesized multicolor polymeric CDs through solvothermal treatment of citric acid and urea in formamide. Automated reversed-phase column separation was used to achieve fractions with distinct colors, including blue, cyan, green, yellow, orange and red. This work explores the physicochemical properties and fluorescence origins of the red, green, and blue fractions in depth with combined experimental and computational methods. Three dominant fluorescence mechanism hypotheses were evaluated by comparing time-dependent density functional theory and molecular dynamics calculation results to measured characteristics. We find that blue fluorescence likely comes from embedded small molecules trapped in carbonaceous cages, while pyrene analogs are the most likely origin for emission at other wavelengths, especially in the red. Also important, upon interaction with live cells, different CD color fractions are trafficked to different sub-cellular locations. Super-resolution imaging shows that the blue CDs were found in a variety of organelles, such as mitochondria and lysosomes, while the red CDs were primarily localized in lysosomes. These findings significantly advance our understanding of the photoluminescence mechanism of multicolor CDs and help to guide future design and applications of these promising nanomaterials. 
    more » « less
  3. Carbon dots (CDs) have received extensive attention in the last decade for their excellent optical, chemical and biological properties. In recent years, CD composites have also received significant attention due to their ability to improve the intrinsic properties and expand the application scope of CDs. In this article, the synthesis processes of four types of CD composites (metal–CD, nonmetallic inorganics–CD, and organics–CD as well as multi-components—CD composites) are systematically summarized first. Then the recent advancements in the bioapplications (bioimaging, drug delivery and biosensing) of these composites are also highlighted and discussed. Last, the current challenges and future trends of CD composites in biomedical fields are discussed. 
    more » « less
  4. Abstract

    Carbon dots (CDs) are extensively studied to investigate their unique optical properties such as undergoing electron transfer in different scenarios. This work presents an in‐depth investigation to study the ensemble‐averaged state/bulk state and single‐particle level photophysical properties of CDs that are passivated with electron‐accepting (CD‐A) and electron‐donating molecules (CD‐D) on their surface. The bulk‐state experiments reveal that in a mixture of these CDs, CD‐A dominates the overall photophyiscal properties and eventually leads to formation of at least two associated geometries, which is dependent on time, concentration, intramolecular electron/charge transfer, and hydrogen bonding. Single‐particle studies, however, do not reveal an “acceptor‐dominating” scenario based on analysis of instantaneous intensity, bleaching kinetics, and photoblinking, indicating that the direct interaction of these CDs may affect their photophysical properties in the bulk state due to formation of hierarchical structural assemblies. Here it is anticipated that these fundamental results will further provide insights toward the understanding of the complex mechanism associated with CD emission, which is one of the key contributors to their successful application. As an immediate application of these functional CDs, it is shown that they can be used as a sensing array for metal ions and serve as a powerful toolbox for their technological applications.

     
    more » « less
  5. Carbon dots (CDs) are emerging as the material of choice in a range of applications due to their excellent photoluminescence properties, ease of preparation from inexpensive precursors, and low toxicity. However, the precise nature of the mechanism for the fluorescence is still under debate, and several molecular fluorophores have been reported. In this work, a new blue fluorophore, 5-oxopyrrolidine-3-carboxylic acid, was discovered in carbon dots synthesized from the most commonly used precursors: citric acid and urea. The molecular product alone has demonstrated interesting aggregation-enhanced emission (AEE), making it unique compared to other fluorophores known to be generated in CDs. We propose that this molecular fluorophore is associated with a polymer backbone within the CDs, and its fluorescence behavior is largely dependent on intermolecular interactions with the polymers or other fluorophores. Thus, a new class of non-traditional fluorophores is now relevant to the consideration of the CD fluorescence mechanism, providing both an additional challenge to the community in resolving the mechanism and an opportunity for a greater range of CD design schemes and applications. 
    more » « less